• 제목/요약/키워드: MCF-7 human breast cancer cell

검색결과 320건 처리시간 0.026초

Caveolin-1, Through its Ability to Negatively Regulate TLR4, is a Crucial Determinant of MAPK Activation in LPS-challenged Mammary Epithelial Cells

  • Wang, Xiao-Xi;Wu, Zheng;Huang, Hui-Fang;Han, Chao;Zou, Wei;Liu, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2295-2299
    • /
    • 2013
  • Background: To explore the role of caveolin-1(CAV-1) gene silencing on MAPK activation in lipopolysaccharide (LPS)-challenged human mammary epithelial cells. Methods: We established a MCF-10ACE of CAV-1 gene silencing from human mammary epithelial cell line MCF-10A by RNAi technology. DNA Microarray were used to detect the expression of inflammation-associated genes in MCF10ACE. Western blotting was used to examine the activation of MAPK in lipopolysaccharide(LPS)-challenged MCF-10A and MCF-10ACE. Moreover, immunofluorescence and Western bloting were performed to detect the co-localization of CAV-1 and toll-like receptor 4 (TLR4) in human mammary epithelial cells. Results: MCF-10ACE exhibited significant increases in inflammation-associated gene expression, especially IL-6 (~7-fold) and IL6R (~17-fold). In addition, LPS-induced p38 MAPK and JNK MAPK activation was significantly increased in MCF-10ACE. Furthermore, CAV-1 co-localized with TLR4 and appeared a negative correlation trend. Conclusion: CAV-1 gene silencing promotes MAPK activation via TLR4 signaling in human mammary epithelial cells response to LPS.

Aloe vera Inhibits Proliferation of Human Breast and Cervical Cancer Cells and Acts Synergistically with Cisplatin

  • Hussain, Arif;Sharma, Chhavi;Khan, Saniyah;Shah, Kruti;Haque, Shafiul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권7호
    • /
    • pp.2939-2946
    • /
    • 2015
  • Many of the anti-cancer agents currently used have an origin in natural sources including plants. Aloe vera is one such plant being studied extensively for its diverse health benefits, including cancer prevention. In this study, the cytotoxic potential of Aloe vera crude extract (ACE) alone or in combination with cisplatin in human breast (MCF-7) and cervical (HeLa) cancer cells was studied by cell viability assay, nuclear morphological examination and cell cycle analysis. Effects were correlated with modulation of expression of genes involved in cell cycle regulation, apoptosis and drug metabolism by RT-PCR. Exposure of cells to ACE resulted in considerable loss of cell viability in a dose- and time-dependent fashion, which was found to be mediated by through the apoptotic pathway as evidenced by changes in the nuclear morphology and the distribution of cells in the different phases of the cell cycle. Interestingly, ACE did not have any significant cytotoxicity towards normal cells, thus placing it in the category of safe chemopreventive agent. Further, the effects were correlated with the downregulation of cyclin D1, CYP 1A1, CYP 1A2 and increased expression of bax and p21 in MCF-7 and HeLa cells. In addition, low dose combination of ACE and cisplatin showed a combination index less than 1, indicating synergistic growth inhibition compared to the agents applied individually. In conclusion, these results signify that Aloe vera may be an effective anti-neoplastic agent to inhibit cancer cell growth and increase the therapeutic efficacy of conventional drugs like cispolatin. Thus promoting the development of plant-derived therapeutic agents appears warranted for novel cancer treatment strategies.

Roles of p53 and Caspases in Induction of Apoptosis in MCF-7 Breast Cancer Cells Treated with a Methanolic Extract of Nigella Sativa Seeds

  • Alhazmi, Mohammed I.;Hasan, Tarique N.;Shafi, Gowhar;Al-Assaf, Abdullah H.;Alfawaz, Mohammed A.;Alshatwi, Ali A.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9655-9660
    • /
    • 2014
  • Background: Nigella Sativa (NS) is an herb from the Ranunculaceae family that exhibits numerous medicinal properties and has been used as important constituent of many complementary and alternative medicines (CAMs). The ability of NS to kill cancer cells such as PC3, HeLa and hepatoma cells is well established. However, our understanding of the mode of death caused by NS remains nebulous. The objective of this study was to gain further insight into the mode and mechanism of death caused by NS in breast cancer MCF-7 cells. Materials and Methods: Human breast cancer cells (MCF-7) were treated with a methanolic extract of NS, and a dose- and time-dependent study was performed. The $IC_{50}$ was calculated using a Cell Titer $Blue^{(R)}$ viability assay assay, and evidence for DNA fragmentation was obtained by fluorescence microscopy TUNEL assay. Gene expression was also profiled for a number of apoptosis-related genes (Caspase-3, -8, -9 and p53 genes) through qPCR. Results: The $IC_{50}$ of MCF-7 cells was $62.8{\mu}L/mL$. When MCF-7 cells were exposed to $50{\mu}L/mL$ and $100{\mu}L/mL$ NS for 24h, 48h and 72h, microscopic examination (TUNEL assay) revealed a dose- and time-dependent increase in apoptosis. Similarly, the expression of the Caspase-3, -8, -9 and p53 genes increased significantly according to the dose and time. Conclusions: NS induced apoptosis in MCF-7 cells through both the p53 and caspase pathways. NS could potentially represent an alternative source of medicine for breast cancer therapy.

shRNA Mediated RHOXF1 Silencing Influences Expression of BCL2 but not CASP8 in MCF-7 and MDA-MB-231 Cell Lines

  • Ghafouri-Fard, Soudeh;Abdollahi, Davood Zare;Omrani, Mirdavood;Azizi, Faezeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5865-5869
    • /
    • 2012
  • RHOXF1 has been shown to be expressed in embryonic stem cells, adult germline stem cells and some cancer lines. It has been proposed as a candidate gene to encode transcription factors regulating downstream genes in the human testis with antiapoptotic effects. Its expression in cancer cell lines has implied a similar role in the process of tumorigenesis. The human breast cancer cell lines MDA-MB-231 and MCF-7 were cultured in DMEM medium and transfected with a pGFP-V-RS plasmid bearing an RHOXF1 specific shRNA. Quantitative real-time RT-PCR was performed for RHOXF1, CASP8, BCL2 and HPRT genes. Decreased RHOXF1 expression was confirmed in cells after transfection. shRNA knock down of RHOXF1 resulted in significantly decreased BCL2 expression in both cell lines but no change in CASP8 expression. shRNA targeting RHOXF1 was shown to specifically mediate RHOXF1 gene silencing, so RHOXF1 can mediate transcriptional activation of the BCL2 in cancers and may render tumor cells resistant to apoptotic cell death induced by anticancer therapy. shRNA mediated knock down of RHOXF1 can be effective in induction of apoptotic pathway in cancer cells via BCL2 downregulation, so it can have potential therapeutic utility for human breast cancer.

Synergistic Induction of Apoptosis by the Combination of an Axl Inhibitor and Auranofin in Human Breast Cancer Cells

  • Ryu, Yeon-Sang;Shin, Sangyun;An, Hong-Gyu;Kwon, Tae-Uk;Baek, Hyoung-Seok;Kwon, Yeo-Jung;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • 제28권5호
    • /
    • pp.473-481
    • /
    • 2020
  • Axl receptor tyrosine kinase has been implicated in cancer progression, invasion, and metastasis in various cancer types. Axl overexpression has been observed in many cancers, and selective inhibitors of Axl, including R428, may be promising therapeutic agents for several human cancers, such as breast, lung, and pancreatic cancers. Here, we examined the cell growth inhibition mediated by R428 and auranofin individually as well as in combination in the human breast cancer cell lines MCF-7 and MDA-MB-231 to identify new advanced combination treatments for human breast cancer. Our data showed that combination therapy with R428 and auranofin markedly inhibited cancer cell proliferation. Isobologram analyses of these cells indicated a clear synergism between R428 and auranofin with a combination index value of 0.73. The combination treatment promoted apoptosis as indicated by caspase 3 activation and poly (ADP-ribose) polymerase cleavage. Cancer cell migration was also significantly inhibited by this combination treatment. Moreover, we found that combination therapy significantly increased the expression level of Bax, a mitochondrial proapoptotic factor, but decreased that of the X-linked inhibitor of apoptosis protein. Furthermore, the suppression of cell viability and induction of Bax expression by the combination treatment were recovered by treatment with N-acetylcysteine. In conclusion, our data demonstrated that combined treatment with R428 and auranofin synergistically induced apoptosis in human breast cancer cells and may thus serve as a novel and valuable approach for cancer therapy.

Comparison of the Growth Inhibition by Alpha-Difluoromethylornithin and Hydroxytamoxifen in MCF-7 Human Breast Cancer Cells

  • Kim, Byeong-Gee;Seok, Sorah;Lee, Kyeong-Hee;Lee, Ji-Young;Park, Won-Hyuck
    • Journal of Life Science
    • /
    • 제11권1호
    • /
    • pp.22-26
    • /
    • 2001
  • In estrogen-dependent MCF-7 human breast cancer cells, $E_2$ at 10 nM stimulated cell proliferation to over 200% compared to the untreated control. EGF and TGF${\alpha}$, which are known as the autocrine/paracrine growth factors induced by $E_2$, also directly stimulated the cell growth in almost as the same extent as $E_2$. DFMO which is the specific inhibitor of ODC could inhibit cell growth even at as low as 0.5 mM. In the treatment with 1 mM DFMO for 4 days, the cell growth was inhibited to 38% of the control. HO-TAM at 1 ${\mu}$M could inhibit the proliferation of MCF-7 cells to 19% of the control. Those inhibitory effects were also found in the cells stimulated with $E_2$, EGF, and TGF${\alpha}$. The inhibitory effects were found even in 2 days of treatment. However, $E_2$, EGF, and TGF${\alpha}$ did not give any effect in the protein synthesis. Neither DFMO or HO-TAM gave any effect on the total protein synthesis. But the pattern of protein secretion was noticeably influenced by the growth stimulants or inhibitors. Proteins of 160, 52, 42, 36, and 32 kDa belonged to the major secretory proteins. Especially, 42 and 36 kDa proteins were most significantly influenced by the treatment of $E_2$, EGF, or TGF$\alpha$. DFMO and HO-TAM inhibited the secretion of these major proteins.

  • PDF

D-Pinitol Promotes Apoptosis in MCF-7 Cells via Induction of p53 and Bax and Inhibition of Bcl-2 and NF-κB

  • Rengarajan, Thamaraiselvan;Nandakumar, Natarajan;Rajendran, Peramaiyan;Haribabu, Lingaiah;Nishigaki, Ikuo;Balasubramanian, Maruthaiveeran Periyasamy
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권4호
    • /
    • pp.1757-1762
    • /
    • 2014
  • Development of drugs from natural products has been undergoing a gradual evoluation. Many plant derived compounds have excellent therapeutic potential against various human ailments. They are important sources especially for anticancer agents. A number of promising new agents are in clinical development based on their selective molecular targets in the field of oncology. D-pinitol is a naturally occurring compound derived from soy which has significant pharmacological activitites. Therefore we selected D-pinitol in order to evaluate apoptotic potential in the MCF-7 cell line. Human breast cancer cells were treated with different concentrations of D-pinitol and cytotoxicity was measured by MTT and LDH assays. The mechanism of apoptosis was studied with reference to expression of p53, Bcl-2, Bax and NF-kB proteins. The results revealed that D-pinitol significantly inhibited the proliferation of MCF-7 cells in a concentration-dependent manner, while upregulating the expression of p53, Bax and down regulating Bcl-2 and NF-kB. Thus the results obtained in this study clearly vindicated that D-pinitol induces apotosis in MCF-7 cells through regulation of proteins of pro- and anti-apoptotic cascades.

X-linked Gene Expression Profiles by RNAi-Mediated BRCA1 Knockdown in MCF7 Cells

  • Song, Min-Ae;Park, Jung-Hoon;Ahn, Hee-Jeong;Ko, Jung-Jae;Lee, Su-Man
    • Genomics & Informatics
    • /
    • 제3권4호
    • /
    • pp.154-158
    • /
    • 2005
  • Germ-line mutations of the BRCA1 gene confer an increased risk for breast and ovarian cancers. BRCA1 in female cells is directly related with the maintenance of the inactive X chromosome (Xi). The effect by the loss of the BRCA1 function on the X chromosome gene expression remains unclear in cancer cells. We attempted to investigate the expression pattern of the X-linked genes by performing BRCA1 knockdown via RNA interference in the MCF7 breast cancer cell line. The transcriptional and translational levels of BRCA1 were decreased over 95% in the MCF7 cells after BRCA1 knockdown. The expression patterns of one hundred ninety X-linked genes were profiled by the X chromosome-specific cDNA arrays. A total of seven percent of the X-linked genes (14/190) were aberrantly expressed by over 2-fold in the MCF7-BRCA1 knockdown cells, which contained two up-regulated genes (2/190, 1 %) and 12 down-regulated genes (12/190, 6.3%). It is interesting that 72% of the aberrantly expressed X-linked genes were located on the Xq (10/14,) region. Our data suggests that BRCA1 may not be important to maintain X chromosome inactivation in cancer because the BRCA1 knockdown did increase the expression of the only one percent of X-linked genes in the human breast cancer cells.

Kanakugiol, a Compound Isolated from Lindera erythrocarpa, Promotes Cell Death by Inducing Mitotic Catastrophe after Cell Cycle Arrest

  • Lee, Jintak;Chun, Hyun-Woo;Pham, Thu-Huyen;Yoon, Jae-Hwan;Lee, Jiyon;Choi, Myoung-Kwon;Ryu, Hyung-Won;Oh, Sei-Ryang;Oh, Jaewook;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권2호
    • /
    • pp.279-286
    • /
    • 2020
  • A novel compound named 'kanakugiol' was recently isolated from Lindera erythrocarpa and showed free radical-scavenging and antifungal activities. However, the details of the anti-cancer effect of kanakugiol on breast cancer cells remain unclear. We investigated the effect of kanakugiol on the growth of MCF-7 human breast cancer cells. Kanakugiol affected cell cycle progression, and decreased cell viability in MCF-7 cells in a dose-dependent manner. It also enhanced PARP cleavage (50 kDa), whereas DNA laddering was not induced. FACS analysis with annexin V-FITC/PI staining showed necrosis induction in kanakugiol-treated cells. Caspase-9 cleavage was also induced. Expression of death receptors was not altered. However, Bcl-2 expression was suppressed, and mitochondrial membrane potential collapsed, indicating limited apoptosis induction by kanakugiol. Immunofluorescence analysis using α-tubulin staining revealed mitotic exit without cytokinesis (4N cells with two nuclei) due to kanakugiol treatment, suggesting that mitotic catastrophe may have been induced via microtubule destabilization. Furthermore, cell cycle analysis results also indicated mitotic catastrophe after cell cycle arrest in MCF-7 cells due to kanakugiol treatment. These findings suggest that kanakugiol inhibits cell proliferation and promotes cell death by inducing mitotic catastrophe after cell cycle arrest. Thus, kanakugiol shows potential for use as a drug in the treatment of human breast cancer.

Anti Tumoral Properties of Punica granatum (Pomegranate) Seed Extract in Different Human Cancer Cells

  • Seidi, Khaled;Jahanban-Esfahlan, Rana;Abasi, Mozhgan;Abbasi, Mehran Mesgari
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1119-1122
    • /
    • 2016
  • Background: Punica granatum (PG) has been demonstrated to possess antitumor effects on various types of cancer cells. In this study, we determined antiproliferative properties of a seed extract of PG (PSE) from Iran in different human cancer cells. Materials and Methods: A methanolic extract of pomegranate seeds was prepared. Total phenolic content (TPC) and total flavonoid content (TFC) were assessed by colorimetric assays. Antioxidant activity was determined with reference to DPPH radical scavenging activity. The cytotoxicity of different doses of PSE (0, 5, 20, 100, 250, 500, $1000{\mu}g/ml$) was evaluated by MTT assays with A549 (lung non small cell carcinoma), MCF-7 (breast adenocarcinoma), SKOV3 (ovarian cancer cells), and PC-3 (prostate adenocarcinoma) cells. Results: Significant (P<0.01) or very significant (P<0.0001) differences were observed in comparison to negative controls at all tested doses ($5-1000{\mu}g/ml$). In all studied cancer cells, PSE reduced the cell viability to values below 23%, even at the lowest doses. In all cases, IC50 was determined at doses below $5{\mu}g/ml$. In this regard, SKOV3 ovarian cancer cells were the most responsive to antiproliferative effects of PSE with a maximum mean growth inhibition of 86.8% vs. 82.8%, 81.4% and 80.0% in MCF-7, PC-3 and A549 cells, respectively. Conclusions: Low doses of PSE exert potent antiproliferative effects on different human cancer cells SKOV3 ovarian cancer cells as most and A549 cells ar least responsive regarding cytotoxic effects. However, the mechanisms of action need to be addressed.