• Title/Summary/Keyword: MCD12Q1

Search Result 8, Processing Time 0.024 seconds

Effect of the Application of Temporal Mask Map on the Relationship between NDVI and Rice Yield (시계열 마스크 맵이 논벼 NDVI와 단수와의 관계에 미치는 영향)

  • Na, Sang-il;Ahn, Ho-yong;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.725-733
    • /
    • 2020
  • The objectives of this study were (1) to develop a temporal mask map using MCD12Q1 data, and (2) to extract the annual variations in paddy, (3) to investigate the correlation analysis between MYD13Q1 NDVI and rice yield, and (4) to review its applicability. For these purposes, the temporal mask map was created using annual MCD12Q1 PFT data from 2002 to 2019, and compared with the fixed mask map. As a result, it found that the temporal mask map well reflected the variations of the paddy area. In addition, the correlation coefficient between NDVI and rice yield was also high significant as compared to the fixed mask map. Therefore, the temporal mask map will be useful for NDVI extraction, crop monitoring, and estimation of rice yield.

Accuracy Assessment of Global Land Cover Datasets in South Korea

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.601-610
    • /
    • 2018
  • The national accuracy of global land cover (GLC) products is of great importance to ecological and environmental research. However, GLC products that are derived from different satellite sensors, with differing spatial resolutions, classification methods, and classification schemes are certain to show some discrepancies. The goal of this study is to assess the accuracy of four commonly used GLC datasets in South Korea, GLC2000, GlobCover2009, MCD12Q1, and GlobeLand30. First, we compared the area of seven classes between four GLC datasets and a reference dataset. Then, we calculated the accuracy of the four GLC datasets based on an aggregated classification scheme containing seven classes, using overall, producer's and user's accuracies, and kappa coefficient. GlobeLand30 had the highest overall accuracy (77.59%). The overall accuracies of MCD12Q1, GLC2000, and GlobCover2009 were 75.51%, 68.38%, and 57.99%, respectively. These results indicate that GlobeLand30 is the most suitable dataset to support a variety of national scientific endeavors in South Korea.

A feasibility modeling of potential dam site for hydroelectricity based on ASTGTM DEM data (ASTGTM 전지구 DEM 기반의 수력발전댐 적지분석 사전모델링)

  • Jang, Wonjin;Lee, Yonggwan;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.545-555
    • /
    • 2020
  • A feasibility modeling for potential hydroelectric dam site selection was suggested using 1 sec ASTGTM (ASTER Global Digital Elevation Model) and Terra/Aqua MODIS (Moderate Resolution Imaging Spectroradiometer) derived land use (MCD12Q1) data. The modeling includes DEM pre-processing of peak, sink, and flat, river network generation, watershed delineation and segmentation, terrain analysis of stream cross section and reservoir storage, and estimation of submerged area for compensation. The modeling algorithms were developed using Python and as an open source GIS. When a user-defined stream point is selected, the model evaluates potential hydroelectric head, reservoir surface area and storage capacity curve, watershed time of concentration from DEM, and compensation area from land use data. The model was tested for 4 locations of already constructed Buhang, BohyunMountain, Sungdeok, and Yeongju dams. The modeling results obtained maximum possible heads of 37.0, 67.0, 73.0, 42.0 m, surface areas of 1.81, 2.4, 2.8, 8.8 ㎢, storages of 35.9, 68.0, 91.3, 168.3×106 ㎥ respectively. BohyunMountain and Sungdeok show validity but in case of Buhang and Yeongju dams have maximum head errors. These errors came from the stream generation error due to ASTGTM. So, wrong dam watershed boundary limit the head. This study showed a possibility to estimate potential hydroelectric dam sites before field investigation especially for overseas project.

Agricultural drought monitoring using the satellite-based vegetation index (위성기반의 식생지수를 활용한 농업적 가뭄감시)

  • Baek, Seul-Gi;Jang, Ho-Won;Kim, Jong-Suk;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.305-314
    • /
    • 2016
  • In this study, a quantitative assessment was carried out in order to identify the agricultural drought in time and space using the Terra MODIS remote sensing data for the agricultural drought. The Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were selected by MOD13A3 image which shows the changes in vegetation conditions. The land cover classification was made to show only vegetation excluding water and urbanized areas in order to collect the land information efficiently by Type1 of MCD12Q1 images. NDVI and EVI index calculated using land cover classification indicates the strong seasonal tendency. Therefore, standardized Vegetation Stress Index Anomaly (VSIA) of EVI were used to estimated the medium-scale regions in Korea during the extreme drought year 2001. In addition, the agricultural drought damages were investigated in the country's past, and it was calculated based on the Standardized Precipitation Index (SPI) using the data of the ground stations. The VSIA were compared with SPI based on historical drought in Korea and application for drought assessment was made by temporal and spatial correlation analysis to diagnose the properties of agricultural droughts in Korea.

Land Cover Classification Map of Northeast Asia Using GOCI Data

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.1
    • /
    • pp.83-92
    • /
    • 2019
  • Land cover (LC) is an important factor in socioeconomic and environmental studies. According to various studies, a number of LC maps, including global land cover (GLC) datasets, are made using polar orbit satellite data. Due to the insufficiencies of reference datasets in Northeast Asia, several LC maps display discrepancies in that region. In this paper, we performed a feasibility assessment of LC mapping using Geostationary Ocean Color Imager (GOCI) data over Northeast Asia. To produce the LC map, the GOCI normalized difference vegetation index (NDVI) was used as an input dataset and a level-2 LC map of South Korea was used as a reference dataset to evaluate the LC map. In this paper, 7 LC types(urban, croplands, forest, grasslands, wetlands, barren, and water) were defined to reflect Northeast Asian LC. The LC map was produced via principal component analysis (PCA) with K-means clustering, and a sensitivity analysis was performed. The overall accuracy was calculated to be 77.94%. Furthermore, to assess the accuracy of the LC map not only in South Korea but also in Northeast Asia, 6 GLC datasets (IGBP, UMD, GLC2000, GlobCover2009, MCD12Q1, GlobeLand30) were used as comparison datasets. The accuracy scores for the 6 GLC datasets were calculated to be 59.41%, 56.82%, 60.97%, 51.71%, 70.24%, and 72.80%, respectively. Therefore, the first attempt to produce the LC map using geostationary satellite data is considered to be acceptable.

Development of automatic search algorithm for optimal site determination of hydroelectric dam using satellite image (위성영상을 활용한 수력발전용 댐 적지산정 알고리즘 개발)

  • Jang, Wonjin;Lee, Yonggwan;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.71-71
    • /
    • 2020
  • 최근 기후변화의 영향으로 극심한 가뭄과 홍수가 발생하고 기온 또한 꾸준히 상승하고 있으며, 이러한 변화에 대응하기 위해 전 세계에서 이산화탄소를 줄이고 국제 에너지 시장을 재구성하려는 시도가 꾸준히 이루어지고 있다. World Energy Outlook(2012)에 따르면 특히 에너지 시장에서 개발도상국의 수력분야 개발투자가 2035년까지 15,490억 달러에 이를 것으로 전망됨에 따라 국내에서 해외 수력발전사업에 적극적으로 나서고 있다. 그러나 국내와는 달리 댐 건설의 사전조사에 필요한 자료가 없거나 구축하는데 문제가 있어 손쉽게 구할 수 있는 자료로 사전에 수력발전 댐 적지를 조사할 수 있는 기술의 개발이 필요하다. 따라서 본 연구에서는 수력발전용 댐 위치 결정을 위한 예비 적지 분석 알고리즘을 개발하고, 분석 알고리즘에 위성영상자료인 30m 해상도의 ASTGTM(ASTER Global Digital Elevation Model)와 500m 해상도의 MCD12Q1(MODIS/Terra Aqua Land Cover) 토지피복자료를 사용하고자 한다. 예비 적지 분석 알고리즘은 DEM의 전처리, 하천망생성, 유역분할과 지형정보를 고려한 자동적지탐색과 댐 건설시 수몰면적에 따른 보상면적 산정 알고리즘을 포함하고 있으며 Python기반의 오픈소스 GIS로 구현되었다. 적지산정은 DEM으로부터 낙차, 도달시간, 내용적곡선과 같은 지형정보와 토지피복도를 통한 보상면적을 기반으로 순위를 매겨 사용자에게 최적의 위치들을 표출한다. 본 연구의 결과는 향후 해외 수력 댐 적지 예비분석 및 해외 수력산업 진출을 지원할 수 있을 것으로 기대된다.

  • PDF

Improvement of MODIS land cover classification over the Asia-Oceania region (아시아-오세아니아 지역의 MODIS 지면피복분류 개선)

  • Park, Ji-Yeol;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.51-64
    • /
    • 2015
  • We improved the MODerate resolution Imaging Spectroradiometer (MODIS) land cover map over the Asia-Oceania region through the reclassification of the misclassified pixels. The misclassified pixels are defined where the number of land cover types are greater than 3 from the 12 years of MODIS land cover map. The ratio of misclassified pixels in this region amounts to 17.53%. The MODIS Normalized Difference Vegetation Index (NDVI) time series over the correctly classified pixels showed that continuous variation with time without noises. However, there are so many unreasonable fluctuations in the NDVI time series for the misclassified pixels. To improve the quality of input data for the reclassification, we corrected the MODIS NDVI using Correction based on Spatial and Temporal Continuity (CSaTC) developed by Cho and Suh (2013). Iterative Self-Organizing Data Analysis (ISODATA) was used for the clustering of NDVI data over the misclassified pixels and land cover types was determined based on the seasonal variation pattern of NDVI. The final land cover map was generated through the merging of correctly classified MODIS land cover map and reclassified land cover map. The validation results using the 138 ground truth data showed that the overall accuracy of classification is improved from 68% of original MODIS land cover map to 74% of reclassified land cover map.

Influence of Land Cover Map and Its Vegetation Emission Factor on Ozone Concentration Simulation (토지피복 지도와 식생 배출계수가 오존농도 모의에 미치는 영향)

  • Kyeongsu Kim;Seung-Jae Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.1
    • /
    • pp.48-59
    • /
    • 2023
  • Ground-level ozone affects human health and plant growth. Ozone is produced by chemical reactions between oxides of nitrogen (NOx) and volatile organic compounds (VOCs) from anthropogenic and biogenic sources. In this study, two different land cover and emission factor datasets were input to the MEGAN v2.1 emission model to examine how these parameters contribute to the biogenic emissions and ozone production. Four input sensitivity scenarios (A, B, C and D) were generated from land cover and vegetation emission factors combination. The effects of BVOCs emissions by scenario were also investigated. From air quality modeling result using CAMx, maximum 1 hour ozone concentrations were estimated 62 ppb, 60 ppb, 68 ppb, 65 ppb, 55 ppb for scenarios A, B, C, D and E, respectively. For maximum 8 hour ozone concentration, 57 ppb, 56 ppb, 63 ppb, 60 ppb, and 53 ppb were estimated by scenario. The minimum difference by land cover was up to 25 ppb and by emission factor that was up to 35 ppb. From the modeling performance evaluation using ground ozone measurement over the six regions (East Seoul, West Seoul, Incheon, Namyangju, Wonju, and Daegu), the model performed well in terms of the correlation coefficient (0.6 to 0.82). For the 4 urban regions (East Seoul, West Seoul, Incheon, and Namyangju), ozone simulations were not quite sensitive to the change of BVOC emissions. For rural regions (Wonju and Daegu) , however, BVOC emission affected ozone concentration much more than previously mentioned regions, especially in case of scenario C. This implies the importance of biogenic emissions on ozone production over the sub-urban to rural regions.