• Title/Summary/Keyword: MC4 receptor

Search Result 68, Processing Time 0.026 seconds

Effects of L-trans-pyrrolidine-2,4-dicarboxylate, a Glutamate Uptake Inhibitor, on NMDA Receptor-mediated Calcium Influx and Extracellular Glutamate Accumulation in Cultured Cerebellar Granule Neurons

  • Oh, Seikwan;Shin, Chang-Sik;Patrick-P. McCaslin;Seong, Yeon-Hee;Kim, Hack-Seang
    • Archives of Pharmacal Research
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 1997
  • Glutamate uptake inhibitor, L-trans-pyrrolidine-2, 4-dicarboxylate (PDC, $20{\mu}M$) elevated basal and N-methyl-D-aspartate (NMDA, $100{\mu}M$)-induced extracellular glutamate accumulation, while it did not augment kainate $100{\mu}M$-induced glutamate accumulation in cultured cerebellar granule neurons. However, pretreatment with PDC for 1 h significantly reduced NMDA-induced glutamate accumulation, but did not affect kainate-induced response. Pretreatment with glutamate $(5{\mu}M)$ for 1 h also reduced NMDA-induced glutamate accumulation, but did not kainate-induced response. Upon a brief application (3-10 min), PDC did neither induce elevation of intracellular calcium concentration $([Ca^{2+}]_i)$ nor modulate NMDA-indLiced $[Ca^{2+}]_1$ elevation. Pretreatment with PDC for 1 h reduced NMDA-induced $[Ca^{2+}]_1$ elevation, but it did not reduce kainate-induced $[Ca^{2+}]_1$ elevation. These results suggest that glutamate concentration in synaptic clefts of neurana cells is increased by prolonged exposure (1 h) of the cells to PDC, and the accumulated glutamate subsequently induces selective desensitization of NMDA receptor.

  • PDF

HISTOPATHOLOGY AND PERCUTANEOUS ABSORPTION OF TOPICAL FORMULATION CONTAINING NEW CAPSAICIN ANALOG.

  • Kim, Chong-Hyuk;Lee, Beom-Jin;Cha, Bong-Jin;Kim, Soon-Hoe;Kim, Won-Bae
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.115-115
    • /
    • 1997
  • A new capsaicin analog modified with 4-hydroxyl and alkyl chain of capsaicin was a very potent antiinflammatory analgesic drug and may be clinically useful for those who have rheumatoid arthritis, diabetic neuropathy and cancer. The purpose of this study was to investigate histopathology after short and long term application of poloxamer-based gels, and percutaneous absorption of various topical formulations. Poloxamer-based gel was prepared by cold method using poloxamer 407. The poloxamer gels was applied to dorsal sites of hairless mouse skin during one week or one month for the evaluation of skin irritation. The applied site was then sectioned for histopathologic examination. The topical formulations were also prepared using CMC, HPMC, MC, carbopol and glycerylmono stearate. Skin variation of poloxamer gels was studied using excised hairless mouse, rat, hamster and human penis skin. Franz-type diffusion cells were used far skin penetration of drug against receptor phase filled with about 10$m\ell$ of 0.9% saline solution kept at 32$^{\circ}C$. The concentration of drug was determined by the reverse phased C18, Symmetry HPLC with fluorometeric detector. No skin erythema was observed after dorsal application of poloxamer-based gels for one week or one month. No histopathologic changes was also examined, suggesting no skin toxicity of poloxamer-based gels. The order of flux rate was HPMC > MC ( CMC > poloxamer >> glycerylmono stearate ( carbopol. There was a skin variation of poloxamer gels. The flux rate of poloxamer gels was highest in case of hairless mouse followed by rat, human and hamster skin. The Partial support-Ministry of Science and Engineering (HAN project).

  • PDF

Resveratrol Inhibits Nicotinic Stimulation-Evoked Catecholamine Release from the Adrenal Medulla

  • Woo, Seong-Chang;Na, Gwang-Moon;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.155-164
    • /
    • 2008
  • Resveratrol has been known to possess various potent cardiovascular effects in animal, but there is little information on its functional effect on the secretion of catecholamines (CA) from the perfused model of the adrenal medulla. Therefore, the aim of the present study was to determine the effect of resveratrol on the CA secretion from the isolated perfused model of the normotensive rat adrenal gland, and to elucidate its mechanism of action. Resveratrol (10${\sim}100{\mu}$M) during perfusion into an adrenal vein for 90 min inhibited the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (a direct membrane-depolarizer, 56 mM), DMPP (a selective neuronal nicotinic $N_n$ receptor agonist, 100${\mu}$M) and McN-A-343 (a selective muscarinic $M_1$ receptor agonist, 100${\mu}$M) in both a time- and dose- dependent fashion. Also, in the presence of resveratrol (30${\mu}$M), the secretory responses of CA evoked by veratridine 8644 (an activator of voltage-dependent$Na^+$ channels, 100${\mu}$M), Bay-K-8644 (a L-type dihydropyridine $Ca^{2+}$ channel activator, 10${\mu}$M), and cyc1opiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10${\mu}$M) were significantly reduced. In the simultaneous presence of resveratrol (30${\mu}$M) and L-NAME (an inhibitor of NO synthase, 30${\mu}$M), the CA secretory evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644 and cyc1opiazonic acid were recovered to a considerable extent of the corresponding control secretion compared with the inhibitory effect of resveratrol alone. Interestingly, the amount of nitric oxide (NO) released from the adrenal medulla was greatly increased in comparison to its basal release. Taken together, these experimental results demonstrate that resveratrol can inhibit the CA secretory responses evoked by stimulation of cholinergic nicotinic receptors, as well as by direct membrane-depolarization in the isolated perfused model of the rat adrenal gland. It seems that this inhibitory effect of resveratrol is exerted by inhibiting an influx of both ions through $Na^+$ and $Ca^{2+}$ channels into the adrenomedullary cells as well as by blocking the release of $Ca^{2+}$ from the cytoplasmic calcium store, which are mediated at least partly by the increased NO production due to the activation of NO synthase.

Polymorphisms in Glutamate Receptor, Ionotropic, N-methyl-D-aspartate 2B(GRIN2B) Genes of Autism Spectrum Disorders in Korean Population : Family-based Association Study (한국인 자폐스펙트럼장애에서 Glutamate Receptor, Ionotropic, N-methyl-D-Aspartate 2B(GRIN2B) 유전자 다형성-가족기반연구)

  • Yoo, Hee Jeong;Cho, In Hee;Park, Mira;Yoo, Hanik K.;Kim, Jin Hee;Kim, Soon Ae
    • Korean Journal of Biological Psychiatry
    • /
    • v.13 no.4
    • /
    • pp.289-298
    • /
    • 2006
  • Objectives : Autism is a complex neurodevelopmental spectrum disorder with a strong genetic component. Previous neurochemical and genetic studies suggested the possible involvement of glutamate N-methyl-D-aspartate(NMDA) receptor in autism. The aim of study was to investigate the association between the NMDA2B receptor gene(GRIN2B) and autism spectrum disorders(ASD) in the Korean population. Methods : The patients with ASD were diagnosed with Autism Diagnostic Interview-Revised and Autism Diagnostic Observation Schedule based on DSM-IV diagnostic classification. The present study was conducted with the detection of four single nucleotide polymorphisms(SNPs) in GRIK2 and family-based association analysis of the single nucleotide polymorphisms in Korean ASD trios using transmission disequilibrium test (TDT). Results : One hundred twenty six patients with ASD and their biological parents were analyzed. 86.5% were male and 85.1% were diagnosed as autistic disorder. The mean age was $71.9{\pm}31.6$ months(range : 26-185 months). We found that rs1805247 showed significantly preferential transmission(TDT ${\chi}^2$=12.8, p<0.001) in ASD. Conclusion : One SNP in GRIN2B gene was significantly associated with ASD in the Korean population. This result suggests the possible involvement of glutamate NMDA receptor gene in the development of ASD.

  • PDF

Inhibitory Effects of Olmesartan on Catecholamine Secretion from the Perfused Rat Adrenal Medulla

  • Lim, Hyo-Jeong;Kim, Sang-Yong;Lim, Dong-Yoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.4
    • /
    • pp.241-248
    • /
    • 2010
  • The present sutdy aimed to determine whether olmesartan, an angiotensin II (Ang II) type 1 ($AT_1$) receptor blocker, can influence the CA release from the isolated perfused model of the rat adrenal medulla. Olmesartan ($5{\sim}50{\mu}M$) perfused into an adrenal vein for 90 min produced dose- and time-dependent inhibition of the CA secretory responses evoked by ACh (5.32 mM), high $K^+$ (56 mM, a direct membrane-depolarizer), DMPP (100 ${\mu}M$) and McN-A-343 (100 ${\mu}M$). Olmesartan did not affect basal CA secretion. Also, in adrenal glands loaded with olmesartan (15 ${\mu}M$), the CA secretory responses evoked by Bay-K-8644 (10 ${\mu}M$, an activator of voltage-dependent L-type $Ca^{2+}$ channels), cyclopiazonic acid (10 ${\mu}M$, an inhibitor of cytoplasmic $Ca^{2+}$-ATPase), veratridine (100 ${\mu}M$, an activator of voltage-dependent $Na^+$ channels), and Ang II (100 nM) were markedly inhibited. However, at high concentrations ($150{\sim}300{\mu}M$), olmesartan rather enhanced the ACh-evoked CA secretion. Taken together, these results show that olmesartan at low concentrations inhibits the CA secretion evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by direct membrane depolarization from the rat adrenal medulla, but at high concentrations it rather potentiates the ACh-evoked CA secretion. It seems that olmesartan has a dual action, acting as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that this inhibitory effect of olmesartan may be mediated by blocking the influx of both $Na^+$ and $Ca^{2+}$ into the rat adrenomedullary chromaffin cells as well as by inhibiting the $Ca^{2+}$ release from the cytoplasmic calcium store, which is thought to be relevant to the $AT_1$ receptor blockade, in addition to its enhancement on the CA secreton.

$TNF{\alpha}$ Increases the Expression of ${\beta}2$ Adrenergic Receptors in Osteoblasts

  • Baek, Kyung-Hwa;Lee, Hye-Lim;Hwang, Hyo-Rin;Park, Hyun-Jung;Kwon, A-Rang;Qadir, Abdul S.;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.36 no.4
    • /
    • pp.173-178
    • /
    • 2011
  • Tumor necrosis factor alpha ($TNF{\alpha}$) is a multifunctional cytokine that is elevated in inflammatory diseases such as atherosclerosis, diabetes and rheumatoid arthritis. Recent evidence has suggested that ${\beta}2$ adrenergic receptor (${\beta}2AR$) activation in osteoblasts suppresses osteogenic activity. In the present study, we explored whether $TNF{\alpha}$ modulates ${\beta}AR$ expression in osteoblastic cells and whether this regulation is associated with the inhibition of osteoblast differentiation by $TNF{\alpha}$. In the experiments, we used C2C12 cells, MC3T3-E1 cells and primary cultured mouse bone marrow stromal cells. Among the three subtypes of ${\beta}AR$, ${\beta}2$ and ${\beta}3AR$ were found in our analysis to be upregulated by $TNF{\alpha}$. Moreover, isoproterenol-induced cAMP production was observed to be significantly enhanced in $TNF{\alpha}$-primed C2C12 cells, indicating that $TNF{\alpha}$ enhances ${\beta}2AR$ signaling in osteoblasts. $TNF{\alpha}$ was further found in C2C12 cells to suppress bone morphogenetic protein 2-induced alkaline phosphatase (ALP) activity and the expression of osteogenic marker genes including Runx2, ALP and osteocalcin. Propranolol, a ${\beta}2AR$ antagonist, attenuated this $TNF{\alpha}$ suppression of osteogenic differentiation. $TNF{\alpha}$ increased the expression of receptor activator of NF-${\kappa}B$ ligand (RANKL), an essential osteoclastogenic factor, in C2C12 cells which was again blocked by propranolol. In summary, our data show that $TNF{\alpha}$ increases ${\beta}2AR$ expression in osteoblasts and that a blockade of ${\beta}2AR$ attenuates the suppression of osteogenic differentiation and stimulation of RANKL expression by $TNF{\alpha}$. These findings imply that a crosstalk between $TNF{\alpha}$ and ${\beta}2AR$ signaling pathways might occur in osteoblasts to modulate their function.

Mechanism of Leptin-Induced Potentiation of Catecholamine Secretion Evoked by Cholinergic Stimulation in the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Choi, Deok-Ho;Kang, Moo-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.4
    • /
    • pp.227-235
    • /
    • 2004
  • The aim of the present study was to examine the effect of leptin on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Leptin $(1{\sim}100\;ng/ml)$, when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced a dose-dependently the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}\;M)$, DMPP $(10^{-4}\;M)$ and McN-A-343 $(10^{-4}\;M)$, although it alone has weak effect on CA secretion. However, it did not affect the CA secretion evoked by excess $K^+\;(5.6{\times}10^{-2}\;M)$. Leptin alone produced a weak secretory response of the CA. Moreover, leptin (10 ng/ml) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase. However, in the presence of U0126 $(1\;{\mu}M)$, an inhibitor of mitogen-activated protein kinase (MAPK), leptin no longer enhanced the CA secretion evoked by ACh and DMPP. Furthermore, in the presence of anti-leptin (10 ng/ml), an antagonist of Ob receptor, leptin (10 ng/ml) also no longer potentiated the CA secretory responses evoked by DMPP and Bay-K-8644. Collectively, these experimental results suggest that leptin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors), but does not that by membrane depolarization. It seems that this enhanced effect of leptin may be mediated by activation of U0126-sensitive MAPK through the leptin receptors, which is probably relevant to the activation of the dihydropyridine L-type $Ca^{2+}$ channels located on the rat adrenomedullary chromaffin cells.

Modified Renshen Wumei Decoction Alleviates Intestinal Barrier Destruction in Rats with Diarrhea

  • Guan, Zhiwei;Zhao, Qiong;Huang, Qinwan;Zhao, Zhonghe;Zhou, Hongyun;He, Yuanyuan;Li, Shanshan;Wan, Shifang
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1295-1304
    • /
    • 2021
  • Modified Renshen Wumei decoction (MRWD), a famous traditional Chinese medicine, is widely used for treating persistent diarrhea. However, as the mechanism by which MRWD regulates diarrhea remains unknown, we examined the protective effects of MRWD on intestinal barrier integrity in a diarrhea model. In total, 48 male rats were randomly distributed to four treatment groups: the blank group (CK group), model group (MC group), Medilac-Vita group (MV group) and Chinese herb group (MRWD group). After a 21-day experiment, serum and colon samples were assessed. The diarrhea index, pathological examination findings and change in ᴅ-lactate and diamine oxidase (DAO) contents illustrated that the induction of diarrhea caused intestinal injury, which was ameliorated by MV and MRWD infusion. Metabolomics analysis identified several metabolites in the serum. Some critical metabolites, such as phosphoric acid, taurine, cortisone, leukotriene B4 and calcitriol, were found to be significantly elevated by MRWD infusion. Importantly, these differences correlated with mineral absorption and metabolism and peroxisome proliferator-activated receptor (PPAR) pathways. Moreover, it significantly increased the expression levels of TLR4, MyD88 and p-NF-κB p65 proteins and the contents of IL-1 and TNF-α, while the expression levels of occludin, claudin-1 and ZO-1 proteins decreased. These deleterious effects were significantly alleviated by MV and MRWD infusion. Our findings indicate that MRWD infusion helps alleviate diarrhea, possibly by maintaining electrolyte homeostasis, improving the intestinal barrier integrity, and inhibiting the TLR4/NF-κB axis.

Influence of Bradykinin on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Kim, Il-Hwan;Na, Gwang-Moon;Kang, Moo-Jin;Kim, Ok-Min;Choi, Deok-Ho;Ki, Young-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.231-238
    • /
    • 2003
  • The present study was undertaken to investigate the effect of bradykinin on secretion of catecholamines (CA) evoked by stimulation of cholinergic receptors and membrane depolarization from the isolated perfused model of the rat adrenal glands, and to elucidate its mechanism of action. Bradykinin $(3{\times}10^{-8}M)$ alone produced a weak secretory response of the CA. however, the perfusion with bradykinin $(3{\times}10^{-8}M)$ into an adrenal vein of the rat adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by ACh $(5.32{\times}10^{-3}M)$, excess $K^+$ ($5.6{\times}10^{-2}M$, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic agonist) and McN-A-343 ($10^{-4}$ M, a selective M1-muscarinic agonist). Moreover, bradykinin ($3{\times}10^{-8}$ M) in to an adrenal vein for 90 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels. However, in the presence of $(N-Methyl-D-Phe^7)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_2$-bradykinin receptor, bradykinin no longer enhanced the CA secretion evoked by Ach and high potassium whereas the pretreatment with Lys-$(des-Arg^9,\;Leu^9)$-bradykinin trifluoroacetate salt $(3{\times}10^{-8}M)$, an antagonist of $BK_1$-bradykinin receptor did fail to affect them. Furthermore, the perfusion with bradykinin $(3{\times}10^{-6}M)$ into an adrenal vein of the rabbit adrenal gland for 90 min enhanced markedly the secretory responses of CA evoked by excess $K^+$ $(5.6{\times}10^{-2}M)$. Collectively, these experimental results suggest that bradykinin enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) and membrane depolarization through the activation of $B_2$-bradykinin receptors, not through $B_1$-bradykinin receptors. This facilitatory effect of bradykinin seems to be associated to the increased $Ca^{2+}$ influx through the activation of the dihydropyridine L-type $Ca^{2+}$ channels.

Influence of Cilnidipine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization in the Perfused Rat Adrenal Gland

  • Lim, Dong-Yoon;Woo, Seong-Chang;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.95-95
    • /
    • 2001
  • Ciinidipine (FRC-8635) is a newly synthesized novel DHP type of organic Ca$\_$2+/channel blockers that have been developed so far in Japan (Yoshimoto et al., 1991 : Hosono et at., 1992). It also has a blocking action on L-type voltage-dependent Ca$\^$2+/channel (VDCCs) in the rabbit basilar artery (Oike et al., 1990) and a slow-onset and long-lasting hypotensive action in clinical and experimental studies (Ikeda et al., 1992 ; Tominaga et al., 1997). Recent electrophysiological data indicate that cilnidipine might be a dual-channel antagonist for peripheral neuronal N-type and vascular L-type Ca$\^$2+/channels (Oike et al., 1990 ; Fujii et al., 1997; Uneyama et at., 1997). However, little is known about the involvement of N-type VDCCs in contributing to the muscarinic receptor-mediated CA secretion. Therefore, the present study was attempted to investigate the effect of cilinidipine on secretion of catecholamines (CA) evoked by ACh, high K$\^$+/, DMPP and McN-A-343 from the isolated perfused rat adrenal gland. Cilnidipine (1-10 ${\mu}$M) perfused into an adrenal vein for 60 min produced dose- and time-dependent inhibition in CA secretory responses evoked by ACh (5.32${\times}$10$\^$-3/M), DMPP (10$\^$-4/ M for 2 min) and McN-A-343 (10$\^$-4/ M for 2 min). However, lower dose of lobeline did not affect CA secretion by high K$\^$+/(5.6${\times}$10$\^$-2/ M), higher dose of it reduced greatly CA secretion of high K$\^$+/. Cilnidipine itself did also fail to affect basal catecholamine output. Furthermore, in adrenal glands loaded with cilnidipine (10 ${\mu}$M), CA secretory response evoked by Bay-K-8644 (10 ${\mu}$M), an activator of L-type Ca$\^$2+/channels was markedly inhibited while CA secretion by cyclopiazonic acid (10 ${\mu}$M), an inhibitor of cytoplasmic Ca$\^$2+/-ATPase was no affected. Moreover, $\omega$-conotoxin GVIA (1 ${\mu}$M), given into the adrenal gland for 60 min, also inhibited time-dependently CA secretory responses evoked by ACh and high K$\^$+/.

  • PDF