• Title/Summary/Keyword: MC3T3E1 osteoblast

Search Result 140, Processing Time 0.021 seconds

CELLULAR ATTACHMENT AND GENE EXPRESSION OF OSTEOBLAST-LIKE CELLS ON ZIRCONIA CERAMIC SURFACES

  • Pae, Ah-Ran;Lee, Hee-Su;Kim, Hyeong-Seob; Baik, Jin;Woo, Yi-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.227-237
    • /
    • 2008
  • STATEMENT OF PROBLEM: Zirconium oxide can be a substitute to titanium as implant materials to solve the esthetic problems of dark color in the gingival portion of implant restorations. PURPOSE: This study was performed to define attachment and growth behavior of osteoblast- like cells cultured on grooved surfaces of zirconium oxide and evaluate the genetic effect of zirconium oxide surfaces using the reverse transcriptase-polymerase chain reaction (RT-PCR). MATERIAL AND METHODS: MC3T3-E1 cells were cultured on (1) commercially pure titanium discs with smooth surface (T group), (2) yttrium-stabilized tetragonal zirconia polycrystal (Y-TZP) with machined surface (ZS group), and (3) Y-TZP with $100{\mu}m$ grooves (ZG group). Cell proliferation activity was evaluated through MTT assay and cell morphology was examined by SEM. The mRNA expression of Runx2, alkaline phosphatase, osteocalcin, TGF-${\beta}1$, IGF-1, G3PDH in E1 cells were evaluated by RT-PCR. RESULTS: From the MTT assay, after 48 hours of adhesion of MC3T3-E1 cells, the mean optical density value of T group and ZG group significantly increased compared to the ZS group. SEM images of osteoblast-like cells showed that significantly more cells were observed to attach to the grooves and appeared to follow the direction of the grooves. After 24 hours of cell adhesion, more spreading and flattening of cells with active filopodia formation occurred. Results of RT-PCR suggest that T group, ZS group, and ZG group showed comparable osteoblast-specific gene expression after 24 hours of cell incubation. CONCLUSION: Surface topography and material of implants can play an important role in expression of osteoblast phenotype markers. Zirconia ceramic showed comparable biological responses of osteoblast-like cells with titanium during a short-time cell culture period. Also, grooves influence cell spreading and guide the cells to be aligned within surface grooves.

THE EFFECTS OF VANADIUM OXIDE & SODIUM ORTHOVANADATE ON MURIN OSTEOBLAST-LIKE (MC3T3-E1) CELLS (Vanadium 화합물이 조골세포주 MC3T3-El에 미치는 영향에 관한 연구)

  • Kwon, Ki-Youl;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.24 no.1 s.44
    • /
    • pp.17-35
    • /
    • 1994
  • Vanadium is an essential trace element but has not been identified with a specific biogical role. To study the direct effects of vanadium on osteoblast, we incubated murin osteoblast-like (MC3T3-El) cells with various corcentration of vanadium oxide & sodium orthovanadate. This study was designed to investigate the effect of vanadium on DNA synthesis, alkaline phosphatase (ALP) activity, cAMP formation responsive to parathormone(PTH) and type I $\alpha$ 2 collagen ribonucleic acid (mRNA) level in murin osteoblast-like (MC3T3-El) cells. The cells were cultured in $\alpha-minimal$ essential medium$(\alpha-MEM)$ supplemented with $10\%$ fetal bovine serum (FBS) and then changed to $0.1\%$ FBS with various concenoation of vanadium oxide & sodium orthovanadate. Quiescent cultured MC3T3-El cells incubated for 24 hours with 2,5,10,15,20 ${\mu}M$ vanadium oxide incorporated $[^3H]Thymidine;$ every concentration showed increases in $[^3H]Thymidine$ incorporations dose dependant manner, the greatest response occurred at $20{\mu}M$. Quiescent cultured MC3T3-E1 cells incubated for 3days with 2,5,10,15,20 ${\mu}M$ vanadium oxide, for 2days with sodium orthovanadate and alkaline phosphatase was assayed with disodium phenyl phosphate as substrate. Vanadium oxide increased the alkaline phosphatase content in MC3T3-El cells at $2{\mu}M\;&\;6{\mu}M$ ; the greatest response occurred at $2{\mu}M$. But decreased at other content sodium orthovanadate increased alkaline phosphatase content in MC3T3-El cells at all concenoation ; the greatest response occurred at $4{\mu}M$. Quiescent cultured MC3T3-El cells incubated for 3days with $5,10{\mu}M$ vanadium oxide , with $5,8{\mu}M$ sodium orthovanadate and cAMP formation was measured by Radioimmunoassay(RIA). Vanadium oxide & sodium orthovanadate showed the tendency of inhibitory effects on cAMP responsiveness to PTH in MC3T3-El cells. Quiescent cultured MC3T3-El cells incubated for 24hours with $10,20{\mu}M$ vanadium oxide, with $5,10{\mu}M$ sodium orthovanadate and Type I $\alpha$ 2 collagen ribonucleic acid (mRNA) expression was studied by Nothern blot analysis. Northern blot analysis of vanadium oxide treated cells showed decreasing effects 0& sodium orthovanadate revealed increasing effects in type I $\alpha$ 2 collagen ribonucleic acid (mRNA) level.

  • PDF

The Change of Taurine Transport in Osteocytes by Oxidative Stress, Hypertonicity and Calcium Channel Blockers

  • Kang, Young-Sook;Kim, Soon-Joo
    • Biomolecules & Therapeutics
    • /
    • v.16 no.3
    • /
    • pp.219-225
    • /
    • 2008
  • Taurine is the most abundant amino acid in many tissues and is found to be enhancing the bone tissue formation or inhibits the bone loss. Although it is reported that taurine reduces the alveolar bone loss through inhibiting the bone resorption, its functions of taurine and expression of taurine transporter (TauT) in bone have not been identified yet. The purpose of this study is to clarify the uptake mechanism of taurine in osteoblast using mouse osteoblast cell lines. In this study, mouse stromal ST2 cells and mouse osteoblast-like MC3T3-E1 cells as osteoblast cell lines were used. The activity of taurine uptake was assessed by measuring the uptake of [$^3H$]taurine in the presence or absence of inhibitors. TauT mRNA was detected in ST2 and MC3T3-E1 cells. [$^3H$]Taurine uptake by these cells was dependent on the presence of extracellular calcium ion. The [$^3H$]taurine uptake in ST2 cells treated with 4 mM calcium was increased by 1.7-fold of the control which was a significant change. In contrast, in $Ca^{++}$-free condition and L-type calcium channel blockers (CCBs), taurine transport to osteocyte was significantly inhibited. In oxidative stress conditions, [$^3H$]taurine uptake was decreased by TNF-$\alpha$ and $H_2O_2$. Under the hyperosmotic conditions, taurine uptake was increased, but inhibited by CCBs in hyperosmotic condition. These results suggest that, in mouse osteoblast cell lines, taurine uptake by TauT was increased by the presence of extracellular calcium, whereas decreased by CCBs and oxidative stresses, such as TNF-$\alpha$ and $H_2O_2$.

Yam Extracts Increase Cell Proliferation and Bone Matrix Protein Collagen Synthesis of Murine Osteoblastic MC3T3-E1 Cells

  • Shin, Mee-Young;Alcantara, Ethel H.;Park, Youn-Moon;Kwon, Soon-Tae;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.291-298
    • /
    • 2011
  • Yam extracts (Dioscorea batatas) have been reported to possess a variety of functions. However, studies on its osteogenic properties are limited. In this study, we investigated the effect of ethanol and water extracts on osteoblast proliferation and bone matrix protein synthesis, type I collagen and alkaline phosphatase (ALP), using osteoblastic MC3T3-E1 cell model. MC3T3-E1 cells were cultured with yam ethanol and water extracts (0~30 mg/L) within 39 days of osteoblast differentiation period. Cell proliferation was measured by MTT assay. Bone matrix proteins were assessed by the accumulation of type I collagen and ALP activity by staining the cell layers for matrix staining. Also, the secreted (media) matrix protein concentration (type I collagen) and enzyme activity (ALP) were measured colorimetrically. Yam ethanol and water extracts stimulated cell proliferation within the range of 15~30 mg/L at 15 day treatment. The accumulation of type I collagen in the extracellular matrix, as well as secreted collagen in the media, increased with increasing doses of yam ethanol (3~15 mg/L) and water (3~30 mg/L) extracts. ALP activity was not affected by yam ethanol extracts. Our results demonstrated that yam extracts stimulated osteoblast proliferation and enhanced the accumulation of the collagenous bone matrix protein type I collagen in the extracellular matrix. These results suggest that yam extracts may be a potential activator for bone formation by increasing osteoblast proliferation and increasing bone matrix protein type I collagen. Before confirming the osteogenic action of yam, further studies for clarifying how and whereby yam extracts can stimulate this ostegenesis action are required.

Fermented sea tangle (Laminaria japonica Aresch) Accelerates Osteoblast Differentiation in murine osteoblastic MC3T3-E1 Cells (MC3T3-E1 골아세포에서 발효 다시마 추출물에 의한 조골세포 분화의 촉진)

  • Nara Jeong;Yung Hyun Choi
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.24-32
    • /
    • 2023
  • The Laminaria japonica Aresch (Sea tangle) belongs to the brown algae and has a long history as a food material in Asia, including Korea. Recent studies have found that the fermented Sea tangle extract (FST) inhibited the differentiation of osteoclasts and protected osteoblasts from oxidative damage. This study aims to explore the possibility that FST can induce the differentiation of osteoblasts and identify the responsible mechanism. According to our results, FST induced differentiation into osteogenic cells in the presence of osteoblastic MC3T3-E1 cells under non-toxic conditions.. This finding was confirmed by phalloidin staining, increased alkaline phosphatase activity, and calcium deposition. Additionally, it was found that this process was achieved by increasing the expression of key factors involved in osteoblast differentiation, such as runt-related transcription factor-2, osterix, β-catenin, and bone morphogenetic protein-2. Moreover, FST increased autophagy, which may contribute to the maintenance of the bone formation homeostasis, and is associated with the activation of the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways. Although further research about the bioactive substances contained in FST and the tests of their efficacy are required, the results of this study indicate that FST has incredible applicability as a functional material for maintaining the bone homeostasis.

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

Effects of ENA-A(ENA actimineral resource A) Ion Water on the Activity and Differentiation of MC3T3-E1 Osteoblastic cell (ENA-A(ENA actimineral resource A) 이온수가 MC3T3-E1 조골세포의 활성과 분화에 미치는 영향)

  • Lee, Ji-Won;Jeon, Sang-Kyung;Kim, Hyun-Jeong;Lee, In-Seon
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.925-931
    • /
    • 2006
  • Culture of osteoblast is extremely valuable in analyzing biological features that are specific to bone. ENA-A, ENA actimineral resource A, is a seaweed origin alkaline water. To investigate the bioactivity of ENA which act on bone metabolism, we studied the effects of a ENA on the activity of osteoblast MC3T3-E1 cells. ENA (1, 2, 4%) dose-dependently increased survival (p<0.05) and alkaline phosphatase activity (p<0.05) on MC3T3-E1 cell. And examined histochemistry and nodule formation according to the time course. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation by using RT-PCR. This study suggest that ENA may promote the function of osteoblastic cells and play an important role in bone formation.

Effects of Petasites japonicus and Momordica charantia L. Extracts on MC3T3-E1 Osteoblastic Cells (머위(Petasites japonicus)와 여주(Momordica charantia L.) 추출물의 MC3T3-E1 조골세포 증식 및 분화에 미치는 효과)

  • Ji, Suk-Hee;Ahn, Do-Hwan;Jun, Mi-Ra
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.203-209
    • /
    • 2010
  • In this study, the effects of Petasites japonicus and Momordica charantia L. extracts on MC3T3-ET1 osteoblastic cells were investigated. Since the activity of osteoblastic cell is one of the important factors for bone formation, the cellular proliferation of osteoblast was evaluated by MTT and alkaline phosphatase (ALP) activity. Compared to control, the cell proliferation was elevated to 114% and 112% by the treatment of Petasites japonicus and Momordica charantia L. extracts, respectively at the concentration of $10\;{\mu}g/mL$. The cell differentiation was also measured by alkaline phosphatase (ALP) activity at 3, 7, 14, and 27 days treatments with one of the extracts, respectively. As results, the ALP activity was significantly increased at 3 days, compared to control (p<0.05). To evaluate the effect of Petasites japonicus and Momordica charantia L. extracts on bone nodule formation, MC3T3-E1 cells were cultured in $\alpha$-MEM for 3, 14, and 21 days and then stained by alizarin red. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, osteoblast cells were cultured in $\alpha$-MEM for 24 hr. RNA was extracted and RT-PCR analysis was performed to examine the expression of OPG, RANKL and osteocalcin. Petasites japonicus extract exhibited the significant increment of osteocalcin compared with the positive control, which suggests that Petasites japonicus may have beneficial effects on bone health through the proliferation of osteoblast cells.

Aqueous extract of Petasites japonicus leaves promotes osteoblast differentiation via up-regulation of Runx2 and Osterix in MC3T3-E1 cells

  • Kim, Eun Ji;Jung, Jae In;Jeon, Young Eun;Lee, Hyun Sook
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.579-590
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Petasites japonicus Maxim (P. japonicus) has been used as an edible and medicinal plant and contains many bioactive compounds. The purpose of this study is to investigate the effect of P. japonicus on osteogenesis. MATERIALS/METHODS: The leaves and stems of P. japonicus were separated and extracted with hot water or ethanol, respectively. The total phenolic compound and total polyphenol contents of each extract were measured, and alkaline phosphatase (ALP) activity of each extract was evaluated to determine their effect on bone metabolism. To investigate the effect on osteoblast differentiation of the aqueous extract of P. japonicus leaves (AL), which produced the highest ALP activity among the tested extracts, collagen content was measured using the Sirius Red staining method, mineralization using the Alizarin Red S staining method, and osteocalcin production through enzyme-linked immunosorbent assay analysis. Also, real-time reverse transcription polymerase chain reaction was performed to investigate the mRNA expression levels of Runt-related transcriptional factor 2 (Runx2) and Osterix. RESULTS: Among the 4 P. japonicus extracts, AL had the highest values in all of the following measures: total phenolic compounds, total polyphenols, and ALP activity, which is a major biomarker of osteoblast differentiation. The AL-treated MC3T3-E1 cells showed significant increases in induced osteoblast differentiation, collagen synthesis, mineralization, and osteocalcin production. In addition, mRNA expressions of Runx2 and Osterix, transcription factors that regulate osteoblast differentiation, were significantly increased. CONCLUSIONS: These results suggest that AL can regulate osteoblasts differentiation, at least in part through Runx2 and Osterix. Therefore, it is highly likely that P. japonicus will be useful as an alternate therapeutic for the prevention and treatment of osteoporosis.

Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways

  • Wu, Xuelun;Li, Shilun;Xue, Peng;Li, Yukun
    • Molecules and Cells
    • /
    • v.41 no.3
    • /
    • pp.234-243
    • /
    • 2018
  • In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of $GSK3{\beta}$, increased ${\beta}-catenin$ phosphorylation at Ser675 site and upregulated nuclear ${\beta}-catenin$ content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, ${\beta}-catenin$ abrogated the liraglutide-induced activation of cAMP, AKT, ${\beta}-catenin$, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through $cAMP/PKA/{\beta}-catenin$ and $PI3K/Akt/GSK3{\beta}$ signaling pathways.