• Title/Summary/Keyword: MC3T3-E1 Cells

Search Result 202, Processing Time 0.026 seconds

DNA microarray analysis of gene expression of MC3T3-E1 osteoblast cell cultured on anodized- or machined titanium surface

  • Park, Ju-Mi;Jeon, Hye-Ran;Pang, Eun-Kyoung;Kim, Myung-Rae;Kang, Na-Ra
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.sup2
    • /
    • pp.299-308
    • /
    • 2008
  • Purpose: The aim of this study was to evaluate adhesion and gene expression of the MC3T3-E1 cells cultured on machined titanium surface (MS) and anodized titanium surface (AS) using MTT test, Scanning electron micrograph and cDNA microarray. Materials and Methods: The MTT test assay was used for examining the proliferation of MC3T3-E1 cells, osteoblast like cells from Rat calvaria, on MS and AS for 24 hours and 48 hours. Cell cultures were incubated for 24 hours to evaluate the influence of the substrate geometry on both surfaces using a Scanning Electron Micrograph (SEM). The cDNA microarray Agilent Rat 22K chip was used to monitor expressions of genes. Results: After 24 hours of adhesion, the cell density on AS was higher than MS (p < 0.05). After 48 hours the cell density on both titanium surfaces were similar (p > 0.05). AS had the irregular, rough and porous surface texture. After 48 hours incubation of the MC3T3-E1 cells, connective tissue growth factor (CTGF) was up-regulated on AS than MS (more than 2 fold) and the insulin-like growth factor 1 receptor was down-regulated (more than 2 fold) on AS than MS. Conclusion: Microarray assay at 48 hours after culturing the cells on both surfaces revealed that osteoinductive molecules appeared more prominent on AS, whereas the adhesion molecules on the biomaterial were higher on MS than AS, which will affect the phenotype of the plated cells depending on the surface morphology.

Effects of Mechanical Stimulation for MC3T3-E1 Cells using Bioreactor (바이오리액터를 이용한 MC3T3-E1 세포의 기계적 자극에 대한 영향)

  • Lee, In-Hwan;Park, Jeong-Hun;Lee, Seung-Jae;Cho, Dong-Woo;Kang, Sang-Sun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1411-1414
    • /
    • 2008
  • It is reported that mechanical stimulation takes a role in improving cell growth in skeletal system. And various research groups have showed that developed bioreactor to stimulate cell-seeded and threedimensional scaffold. In this study, we designed a custom-made bioreactor capable of applying controlled compression to cell-seeded agarose gel. This device consisted of a circulation system and compression system. In circular system, culture chamber was sealed for prohibiting contamination and media solution was circulated by pump. In compression system, mechanical stimuli were controlled by LabVIEW software and mechanical transfer system. Cell-encapsulated agarose gels were cultured for up to 7 days. There were significant differences between the number of cells grown in dynamic cell culture and in static cell culture from 3 days to 7 days.

  • PDF

Anthraquinone Glycoside Aloin Induces Osteogenic Initiation of MC3T3-E1 Cells: Involvement of MAPK Mediated Wnt and Bmp Signaling

  • Pengjam, Yutthana;Madhyastha, Harishkumar;Madhyastha, Radha;Yamaguchi, Yuya;Nakajima, Yuichi;Maruyama, Masugi
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.123-131
    • /
    • 2016
  • Osteoporosis is a bone pathology leading to increased fracture risk and challenging the quality of life. The aim of this study was to evaluate the effect of an anthraquinone glycoside, aloin, on osteogenic induction of MC3T3-E1 cells. Aloin increased alkaline phosphatase (ALP) activity, an early differentiation marker of osteoblasts. Aloin also increased the ALP activity in adult human adipose-derived stem cells (hADSC), indicating that the action of aloin was not cell-type specific. Alizarin red S staining revealed a significant amount of calcium deposition in cells treated with aloin. Aloin enhanced the expression of osteoblast differentiation genes, Bmp-2, Runx2 and collagen 1a, in a dose-dependent manner. Western blot analysis revealed that noggin and inhibitors of p38 MAPK and SAPK/JNK signals attenuated aloin-promoted expressions of Bmp-2 and Runx2 proteins. siRNA mediated blocking of Wnt-5a signaling pathway also annulled the influence of aloin, indicating Wnt-5a dependent activity. Inhibition of the different signal pathways abrogated the influence of aloin on ALP activity, confirming that aloin induced MC3T3-E1 cells into osteoblasts through MAPK mediated Wnt and Bmp signaling pathway.

Chiisanoside, A Lupane Triterpenoid from Acanthopanax Leaves, Stimulates Proliferation and Differentiation of Osteoblastic MC3T3-E1 Cells

  • Choi, Eun-Mi;Ding, Yan;Nguyen, Huu Tung;Park, Sang-Hyuk;Nguyen, Xuan Nhiem;Liang, Chun;Lee, Jung-Joon;Kim, Young-Ho
    • Natural Product Sciences
    • /
    • v.14 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • The leaves of Acanthopanax species have traditionally been used as a tonic and a sedative as well as in the treatment of rheumatism and diabetes. Chiisanoside is the major active lupane triterpenoid of Acanthopanax leaves. To investigate the bioactivities of chiisanoside, which act on bone metabolism, the effects of chiisanoside on the function of osteoblastic MC3T3-E1 cells were studied. Chiisanoside $(0.02{\sim}20\;{\mu}M)$ significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and nodules mineralization in the cells (P < 0.05). The effect of chiisanoside (2 ${\mu}M$) in increasing ALP activity was completely prevented by the presence of tamoxifen, suggesting that the effect of chiisanoside might be partly estrogen receptor mediated. Moreover, cotreatment of p38 inhibitor SB203580 or JNK inhibitor SP600125 inhibited chiisanoside-mediated ALP upregulation, suggesting that the induction of differentiation by chiisanoside is associated with increased activation of p38 and JNK mitogen-activated protein kinases. Our data indicate that the enhancement of osteoblast function by chiisanoside may result in the prevention for osteoporosis.

Effects of Petasites japonicus and Momordica charantia L. Extracts on MC3T3-E1 Osteoblastic Cells (머위(Petasites japonicus)와 여주(Momordica charantia L.) 추출물의 MC3T3-E1 조골세포 증식 및 분화에 미치는 효과)

  • Ji, Suk-Hee;Ahn, Do-Hwan;Jun, Mi-Ra
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.203-209
    • /
    • 2010
  • In this study, the effects of Petasites japonicus and Momordica charantia L. extracts on MC3T3-ET1 osteoblastic cells were investigated. Since the activity of osteoblastic cell is one of the important factors for bone formation, the cellular proliferation of osteoblast was evaluated by MTT and alkaline phosphatase (ALP) activity. Compared to control, the cell proliferation was elevated to 114% and 112% by the treatment of Petasites japonicus and Momordica charantia L. extracts, respectively at the concentration of $10\;{\mu}g/mL$. The cell differentiation was also measured by alkaline phosphatase (ALP) activity at 3, 7, 14, and 27 days treatments with one of the extracts, respectively. As results, the ALP activity was significantly increased at 3 days, compared to control (p<0.05). To evaluate the effect of Petasites japonicus and Momordica charantia L. extracts on bone nodule formation, MC3T3-E1 cells were cultured in $\alpha$-MEM for 3, 14, and 21 days and then stained by alizarin red. To determine the expression patterns of bone-related proteins during the MC3T3-E1 osteoblast-like cell differentiation, osteoblast cells were cultured in $\alpha$-MEM for 24 hr. RNA was extracted and RT-PCR analysis was performed to examine the expression of OPG, RANKL and osteocalcin. Petasites japonicus extract exhibited the significant increment of osteocalcin compared with the positive control, which suggests that Petasites japonicus may have beneficial effects on bone health through the proliferation of osteoblast cells.

Thrombospondins Mediate the Adhesion of Osteoblast to Extracelluar Matrix

  • Lim, Dong-Jin;Bae, In-Ho;Jeong, Byung-Chul;Kim, Sun-Hun;Park, Bae-Keun;Kang, In-Chul;Lee, Shee-Eun;Song, Sang-Hun;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.105-111
    • /
    • 2008
  • Thrombospondins (TSP-1, TSP-2) are secretory extracellular glycoproteins that are involved in a variety of physiological processes such as tumor cell adhesion, invasion, and metastasis. The present study was undertaken to elucidate the involvement of thrombospondins in the adhesion of osteoblast-like cells using the TSP-1 or TSP-2 antisense MG63 and MC3T3-E1 cell lines. For downregulation of TSPs expression, we prepared antisense constructs for TSP-1 and TSP-2 using the pREP4 an episomal mammalian expression vector, which be able to produce the specific antisense oligonucleotides around chromosome. MG63 and MC3T3-E1 osteoblast-like cells were transfected with the antisense constructs and nonliposomal Fugene 6, and then selected under hygromycin B (50 ${\mu}g/ml$) treatment for 2 weeks. Western blot analysis revealed that expression of the TSP proteins was downregulated in the antisense cell lines. The cell adhesion assay showed that adhesive properties of TSP-1 and TSP-2 antisense MG63 cells on the polystyrene culture plate were reduced to 17% and 21% of the control cells, respectively, and those of the TSP-1 and TSP-2 antisense MC3T3-E1 cells also decreased to 19% and 27% of control, respectively. Adhesion of TSP-1 and TSP-2 antisense MC3T3-E1 cells on Type I collagen-coated culture plate decreased to 27% and 76%, respectively. These results indicate that TSP-1 and TSP-2 proteins may have an important role in adhesion of osteoblast-like cells to extracellular matrix.

Effect of the Mechanical Properties of Cell-Interactive Hydrogels on a Control of Cell Phenotype (세포친화적 하이드로젤의 기계적 물성이 세포 표현형 제어에 미치는 영향)

  • Kim, Do Yun;Park, Honghyun;Lee, Kuen Yong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.412-417
    • /
    • 2015
  • A critical element in tissue engineering approaches is a control of the mechanical properties of polymer scaffolds to regulate cell phenotype, which may lead to clinically successful tissue regeneration. In this study, we hypothesized that gel stiffness could be a key factor to manipulate adhesion and proliferation of different types of cells. RGD-modified alginate gels with various mechanical properties were prepared and used as a substrate for MC3T3-E1 and H9C2 cells. Adhesion and growth rate of MC3T3-E1 cells in vitro were increased in parallel with an increase of gel stiffness. In contrast, those of H9C2 cells were decreased. This approach to control the mechanical properties of polymer scaffolds depending on the cell types may find useful applications in the tissue engineering.

Effects of Chrysanthemum indicum L. Extract on the Growth and Differentiation of Osteoblastic MC3T3-E1 Cells (감국(Chrysanthemum indicum L.) 추출물이 MC3T3-E1 조골세포의 증식 및 분화에 미치는 영향)

  • Yun, Jee-Hye;Hwang, Eun-Sun;Kim, Gun-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.10
    • /
    • pp.1384-1390
    • /
    • 2011
  • Chrysanthemum indicum L. (Asteraceae) is a common traditional herbal medicine used for the treatment of inflammation, hypertension, and respiratory diseases due to its strong antagonistic function against inflammatory cytokines. In this study, the effects of Chrysanthemum indicum L. extract (CIE) on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were investigated. CIE (100 ${\mu}g/mL$) significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, and the deposition of collagen and calcium in the cells (p<0.05). The effect of CIE in increasing cell growth, ALP activity, and collagen content was completely prevented by the presence of 1 ${\mu}M$ tamoxifen, suggesting that CIE's effect might be partly involved in estrogen-related activities. These results indicate that the enhancement of osteoblast functionality by CIE may prevent osteoporosis and inflammatory bone diseases.

Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells

  • Park, Mi Hwa;Kim, Seoyeon;Cheon, Jihyeon;Lee, Juyeong;Kim, Bo Kyung;Lee, Sang-Hyeon;Kong, Changsuk;Kim, Yuck Yong;Kim, Mihyang
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.148-153
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Bone formation and bone resorption continuously occur in bone tissue to prevent the accumulation of old bone, this being called bone remodeling. Osteoblasts especially play a crucial role in bone formation through the differentiation and proliferation. Therefore, in this study, we investigated the effects of Scytosiphon lomentaria extract (SLE) on osteoblastic proliferation and differentiation in MC3T3-E1 cells. MATERIALS/METHODS: A cell proliferation assay, alkaline phosphatase (ALP) activity assay, alizarin red staining and protein expression analysis of osteoblastic genes were carried out to assess the osteoblastic proliferation and differentiation. RESULTS: The results indicated that treatment of SLE promoted the proliferation of MC3T3-E1 cells and improved ALP activity. And, SLE treatment significantly promoted mineralized nodule formation compared with control. In addition, cells treated with SLE significantly upregulated protein expression of ALP, type 1 collagen, bone morphogenetic protein 2, runt-related transcription factor 2, osterix, and osteoprotegerin. CONCLUSIONS: The results demonstrate that SLE promote differentiation inducement and proliferation of osteoblasts and, therefore may help to elucidate the transcriptional mechanism of bone formation and possibly lead to the development of bone-forming drugs.

FLUORESCENT LABELLING OF MC3T3 CELL LINE BY 5-(AND-6)-CARBOXY-2', 7'-DICHLOROFLUORESCEIN DIACETATE, SUCCINIMIDYL ESTER MIXED (MC3T3 preosteoblast cell line의 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed에 의한 fluorescent labelling)

  • Kook, Min-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.31 no.6
    • /
    • pp.461-467
    • /
    • 2005
  • Background. 5-(and-6)-carboxy-2',7'-dichlorofluorescein diacetate, succinimidyl ester mixed (CFSE) is the fluorescent labelling agent of living cells and used to trace the cells in vivo after transplatnation of various cells. The CFSE labelled cells can maintain fluorescence for up to 7 days after labelling. The MC3T3-E1 cell line (MC3T3) has been used for many studies about osteoblast, which is well known as a mouse preosteoblast. So the CFSE would be used to trace the transplanted MC3T3. However there are few reports about CFSE labelling of MC3T3. This study is aimed to know about adequate concenturation and incubation time of CFSE to MC3T3. Materials and methods. The MC3T3 was incubated in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ using ${\alpha}$-minimal essential medium (${alpha}$-MEM) containing10% FBS and gentamycin. Ten mM CFSE solution in dimethylsulphoxide (DMSO: 1%) was diluted with phosphate buffered saline (PBS) and final concentration of culture medium was, respectively, 5, 10, 15, 20, 25 and 30 ${{\mu}M$. Then the MC3T3 was incubated with CFSE in a humidified atmosphere of 95% air with 5% $CO_2$ at $37^{\circ}C$ for 5, 10, 15, 20, 25, 30, 35, 40 and 45 minutes in each concentration. The fluorescence of CFSE labelled cells was analysed with a inverted fluorescence microscope. The duration of cell labelling was also studied. Trypan blue dye exclusion test was done for cell viability. Results. For concentration between 5 and 10 ${\mu}M$, CFSE did not significantly label the MC3T3 in vitro. The destruction of MC3T3 was observed at the concentration of 20 ${\mu}M$. In the concentration of 15 ${\mu}M$, the best labelling was obtained at an incubation period between 15 and 30 minutes. The MC3T3 labelled with an incubation period of 15 minutes at 15 ${\mu}M$ was still fluorescent 7 days after CFSE labelling. The mean cell viability was 95.93%. Conclusion. These results suggests an incubation period of 15 minutes at 15 ${\mu}M$ of CFSE provides best labelling of MC3T3 in vitro.