• Title/Summary/Keyword: MC3T3-E1 Cell

Search Result 165, Processing Time 0.026 seconds

Effects of Scutellaria radix Extract on Osteoblast Differentiation and Osteoclast Formation (황금 추출물이 조골세포와 파골세포의 활성에 미치는 영향)

  • Shin, Jeong-Min;Park, Chan-Kyung;Shin, Eun-Ju;Jo, Tae-Hyung;Hwang, In-Kyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.674-679
    • /
    • 2008
  • Scutellaria radix (SR) has been utilized as a traditional medicine for a variety of diseases including Rheumatoid arthritis and its major flavonoids - baicalein, baicalin, and wogonin - have been reported to exert beneficial health effects, including anti-bacterial, anti-viral, anti-inflammatory, and free-radical scavenging. However, the mechanisms underlying this effect remain poorly understood. The principal objective of this study was to determine the effect of SR on osteoblast and osteoclast cells. SR extract was prepared using 70% ethanol solvent. Osteoblastic MC3T3-E1 cells and osteoclast precursor Raw 264.7 macrophage cells were utilized. SR extract increased MC3T3-E1 cell proliferation and stimulated alkaline phosphatase activity dose-dependently, 152.0% of the control at concentration $1{\mu}g/mL$. Additionally, SR extract ($1{\mu}g/mL$) stimulated Bone nodule formation activity in MC3T3-E1 cells, approximately 223.3% of the control, 20 days after the exposure. In addition, SR extract significantly reduced the number of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells from Raw 264.7 cells. In conclusion, SR extract stimulates the proliferation and bioactivities of boneforming osteoblasts, and inhibits the activities of bone-resorbing osteoclasts to a certain degree.

The Effects of Mechanical Stress on Alkaline Phosphatase Activity of MC3T3-E1 Cells (기계적 자극이 MC3T3-EI 세포의 Alkaline Phosphatase Activity에 미치는 영향)

  • BAE, Sung-Min;KYUNG, Hee-Moon;SUNG, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.3
    • /
    • pp.291-299
    • /
    • 1996
  • Orthodontic force is a mechanical stress controlling both of tooth movement and skeletal growth. The mechanical stress stimulate bone cells that may exert some influence on bone remodeling. The purpose of this study was to evaluate the difference in cellular activity depending on mechanical stresses such as compressive and tensile force by determining the alkaline phosphatase(ALP) activity. A clonal osteogenic cell line MC3T3-E1 was seeded into a 24-well plate($2{\times}10^4/well$). At the confluent phase, a continuous compressive hydrostatic pressure($25g/cm^2$, $300g/cm^2$) and continuous tensile hydrostatic pressure($-25g/cm^2$, $-300g/cm^2$) were applied for 4, 6, 10, 14, 18, 20 days respectively by a diaphgragm pump. At the end of the stimulation period, cell layers were prepared for ALP activity assay. The ALP activity of the compressive group increased more than that of the tensile group at same force magnitude, whereas the cells responded to a similar pattern regardless of the type of mechanical stress The ALP activity of the compressive and tensile group turned into the level of the control group as the length of time increased. These results indicated that a mechanical stress may be more effective on cellular activity during active cellular proliferation and differentiation periods. The time to achieve maximum ALP activity was delayed as the mechanical stress increased in both the compressive and the tensile group. Accordingly, the magnitude of the stress rather than the type of mechanical stress may have more influence on cellular activity.

  • PDF

Effects of irradiation on the calcific nodule formation in MC3T3-El osteoblastic cell line (MC3T3-El 골모세포주의 석회화결절 형성에 방사선이 미치는 영향)

  • Kang Ki-Hyun;Lee Sang-Rae;Kwon Ki-Jeong;Koh Kwang-Joon
    • Imaging Science in Dentistry
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Purpose : To investigate the effects of irradiation on the calcium content and calcific nodule formation in the MC3T3-E1 osteoblastic cell line. Materials and Methods : Cells were irradiated with a single dose of 2,4 and 8 Gy at a dose rate of 5.38 Gy/min using a Cs-137 irradiator. After irradiation, the calcium content and calcific nodule formation were examined on the 1 st, 2nd, 3rd and 4th week. Results : A decreasing dose-dependent tendency of the cell proliferation rate was found in all irradiated groups of this experiment when compared with the unirradiated control group. In accordance with the duration of culture, there was no significant difference in the cell proliferation rate after irradiation of 2 Gy when compared with the unirradiated group, however a decreasing tendency was found in 4 Gy- and 8 Gy-irradiated groups. While an increase in total calcium content after irradiation of 2 Gy was found at week 1, week 2, and week 4, there was a decrease in calcium content at week 1 through 4 in the 8 Gy- irradiated group. Calcific nodule formation was increased in irradiated experimental groups when compared with the unirradiated control group in the 2 Gy-irradiated group, but decreased in the 4 Gy- and 8 Gy-irradiated groups at the same stage. Conclusion : The results showed a mild increasing tendency of the calcific nodule formation after irradiation of 2 Gy. However, a decreased calcific nodule formation in 4 Gy- and 8 Gy-irradiated groups was found. Taken together, the irradiation of 2 Gy mildly activated bone formation, however 4 Gy or 8 Gy suppressed bone formation by decreasing cell numbers in the MC3T3-El osteoblastic cell line.

  • PDF

Combined Treatment with Low-Level Laser and rhBMP-2 Promotes Differentiation and Mineralization of Osteoblastic Cells under Hypoxic Stress

  • Heo, Jin-Ho;Choi, Jeong-Hun;Kim, In-Ryoung;Park, Bong-Soo;Kim, Yong-Deok
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.793-801
    • /
    • 2018
  • BACKGROUND: The aim of this study was to evaluate the combined effect of low-level laser treatment (LLLT) and recombinant human bone morphological protein-2 (rhBMP-2) applied to hypoxic-cultured MC3T3-E1 osteoblastic cells and to determine possible signaling pathways underlying differentiation and mineralization of osteoblasts under hypoxia. METHODS: MC3T3-E1 cells were cultured under 1% oxygen tension for 72 h. Cell cultures were divided into four groups: normoxia control, low-level laser (LLL) alone, rhBMP-2 combined with LLLT, and rhBMP-2 under hypoxia. Laser irradiation was applied at 0, 24, and 48 h. Cells were treated with rhBMP-2 at 50 ng/mL. Alkaline phosphatase activity was measured at 3, 7, and 14 days to evaluate osteoblastic differentiation. Cell mineralization was determined with Alizarin red S staining at 7 and 14 days. Western blot assays were performed to evaluate whether p38/protein kinase D (PKD) signaling was involved. RESULTS: The results indicate that LLLT and rhBMP-2 synergistically increased alkaline phosphatase (ALP) activity and mineralization. Western blot analyses showed that expression of type I collagen, runt-related transcription factor 2 (RUNX2), and Osterix (Osx), increased and expression of hypoxia-inducible factor 1-alpha ($HIF-1{\alpha}$), decreased more in the LLLT and rhBMP-2 combined group than in the rhBMP-2 or LLL alone groups. Moreover, LLLT and rhBMP-2 stimulated p38 phosphorylation and rhBMP-2 and LLLT increased Prkd1 phosphorylation. CONCLUSION: Combined treatment with rhBMP-2 and LLL induced differentiation and mineralization of hypoxic-cultured MC3T3-E1 osteoblasts by activating p38/PKD signaling in vitro.

Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

  • Li, Lin-Jie;Kim, So-Nam;Cho, Sung-Am
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.235-240
    • /
    • 2016
  • PURPOSE. In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS. The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS. Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION. This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies.

Ice-Binding Protein Derived from Glaciozyma Can Improve the Viability of Cryopreserved Mammalian Cells

  • Kim, Hak Jun;Shim, Hye Eun;Lee, Jun Hyuck;Kang, Yong-Cheol;Hur, Young Baek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.12
    • /
    • pp.1989-1996
    • /
    • 2015
  • Ice-binding proteins (IBPs) can inhibit ice recrystallization (IR), a major cause of cell death during cryopreservation. IBPs are hypothesized to improve cell viability after cryopreservation by alleviating the cryoinjury caused by IR. In our previous studies, we showed that supplementation of the freezing medium with the recombinant IBP of the Arctic yeast Glaciozyma sp. (designated as LeIBP) could reduce post-thaw hemolysis of human red blood cells and increase the survival of cryopreserved diatoms. Here, we showed that LeIBP could improve the viability of cryopreserved mammalian cells. Human cervical cancer cells (HeLa), mouse fibroblasts (NIH/3T3), human preosteoblasts (MC3T3-E1), Chinese hamster ovary cells (CHO-K1), and human keratinocytes (HaCaT) were evaluated. These mammalian cells were frozen in dimethyl sulfoxide (DMSO)/fetal bovine serum (FBS) solution with or without 0.1 mg/ml LeIBP at a cooling rate of -1℃/min in a -80℃ freezer overnight. The minimum effective concentration (0.1 mg/ml) of LeIBP was determined, based on the viability of HeLa cells after treatment with LeIBP during cryopreservation and the IR inhibition assay results. The post-thaw viability of mammalian cells was examined. In all cases, cell viability was significantly enhanced by more than 10% by LeIBP supplementation in 5% DMSO/5% FBS: viability increased by 20% for HeLa cells, 28% for NIH/3T3 cells, 21% for MC3T3-E1, 10% for CHO-K1, and 20% for HaCaT. Furthermore, addition of LeIBP reduced the concentrations of toxic DMSO and FBS down to 5%. Therefore, we demonstrated that LeIBP can increase the viability of cryopreserved mammalian cells by inhibiting IR.

The effects of irradiation on the mRNA expression of type I collagen and alkaline phosphatase in the MC3T3-E1 osteoblastic cell line (방사선조사가 MC3T3-E1 조골세포주의 type I collagen과 alkaline phosphatase mRNA 발현에 미치는 영향)

  • Choi Sun-Young;Koh Kyang-Joon
    • Imaging Science in Dentistry
    • /
    • v.33 no.1
    • /
    • pp.51-57
    • /
    • 2003
  • Purpose: To investigate the effects of irradiation on the phenotypic expression of the MC3T3-El osteoblastic cell line, particularly an the expression of type I collagen and alkaline phosphatase mRNA. Materials and Methods: Cells were irradiated with a single dose of 0.5, 1, 2, 4, and 8 Gy at a dose rate of 5.38 Gy/min using a cesium 137 irradiator. The specimens were then harvested and RNA extraction was carried out at 1 and 3 days after irradiation. The extracted RNA strands were reverse-transcribed and the resulting cDNA fragments were amplified by PCR. Results: The irradiated cells demonstrated a dose-dependent increase in type I collagen mRNA expression relative to the control group, with a maximum level of type I collagen mRNA expression occurring at 8 Gy. The degree of type I collagen mRNA expression increased significantly at 1 day after irradiation, but little differences were found between the control group and at the 3rd day. The amount of alkaline phosphatase mRNA expression increased significantly at land 3 days after irradiation in the 1 Gy exposed group compared with the control group. Conclusion: The amount of type I collagen and alkaline phosphatase mRNA expression increased significantly 1 day after irradiation when compared with the control group.

  • PDF

Bioactive Polyglycolic Acid (PGA) or Polylactic Acid (PLA) Polymers on Extracellular Matrix Mineralization in Osteoblast-like Mc3T3-E1 Cells

  • Cho, Young-Eun;Kim, Hye-Jin;Kim, Yong-Ha;Choi, Jae-Won;Kim, Youn-Jung;Kim, Gab-Joong;Kim, Jin-Su;Choi, Sik-Young;Kwun, In-Sook
    • Nutritional Sciences
    • /
    • v.9 no.4
    • /
    • pp.233-239
    • /
    • 2006
  • Porous matrices of bioactive polymers such as polyglycolic acid (PGA) or polylactic acid (PLA) can be used as scaffolds in bone tissue growth during bone repair process. These polymers are highly porous and serve as a template for the growth and organization of new bone tissues. We evaluated the effect of PGA and PLA polymers on osteoblastic MC3T3-E1 cell extracellular mineralization. MC3T3-E1 cells were cultured in a time-dependent manner -1, 15, 25d as appropriate - for the period of bone formation stages in one of the five culture circumstances, such as normal osteogenic differentiation medium, PGA-plated, fetal bovine serum (FBS)-plated, PGA/FBS-coplated, and PLA-plated For the evaluation of bone formation, minerals (Ca, Mg, Mn) and alkaline phosphatase activity, a marker for osteoblast differentiation, were measured Alizarin Red staining was used for the measurement of extracellular matrix Ca deposit During the culture period, PGA-plated one was reabsorbed into the medium more easily and faster than the PLA-plated one. At day 15, at the middle stage of bone formation, cellular Ca and Mg levels showed higher tendency in PGA- or PLA-plated treatments compared to non-plated control and at day 25, at the early late stage of bone formation, all three cellular Ca, Mg or Mn levels showed higher tendency as in order of PGA-related treatments and PLA-plated treatments, compared to control even without significance. Medium Ca, Mg or Mn levels didn't show any consistent tendency. Cellular ALP activity was higher in the PGA- or PLA-plated treatments compare to normal osteogenic medium treatment PGA-plated and PGA/FBS-plated treatments showed better Ca deposits than other treatments by measurement of Alizarin Red staining, although PLA-plated treatment also showed reasonable Ca deposit. The results of the present study suggest that biodegradable material, PGA and also with less extent for PLA, can be used as a biomaterial for better extracellular matrix mineralization in osteoblastic MC3T3-E1 cells.

The Effect of $17{\beta}-Estradiol$ on the Gene Expression of IGF-I and Bone Matrix Protein in the Osteoblast-Like Cell (골아세포의 IGF-I 유전자 발현 및 골기질 단백질에 대한 $17{\beta}-estradiol$의 영향)

  • Yang, Won-Suk;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.375-390
    • /
    • 2000
  • The purpose of this study is to evaluate the expression ofIGF-I, considered as the mediator of action of estrogen, and IGF-IA and IGF-IB, alternative slicing form of IGF-I, using $17{\beta}-estradiol$ in MC3T3-E1 cells. We observed the effect on type I collagen and osteopontin gene expression and DNA synthetic activity of MC3T3-E1 cells, added by estrogen, IGF-I and combination and the interactionon proliferation and differentiation of MC3T3-E1 cells. The results were as follows :RT-PCR experiment for observing timedependantIGF-I gene expression patternshowed IGF-IA and IB gene expression in both of control and test group. In these IGF-IA gene expression was appeared predominantly. In control, IGF-I geneexpression level was maintained until 24hr and then decreased gradually. In testgroup, IGF-I gene expression level increased as time goes by. Experiment measuring DNA synthetic activity, as it is added by $17{\beta}-estradiol$, IGF-I and combination, showed that first day , there was the tendency of more increase of synthetic activity in all test group than control but no statical significance(P>0.05), and third day, there was more increase of DNA synthetic activity in $17{\beta}-estradiol$ group and combination group and it was statically significant. (P<0.005) Experiment for observing type I collagen gene expression pattern showed more increase of expression in $17{\beta}-estradiol$ group than control and no significant difference in IGF-I group and combination group. Experiment for observing osteopontin gene expression pattern showed no significant difference in control and test group. In conclusion, $17{\beta}-estradiol$ in MC3T3- E1 cells increased IGF-I gene and DNA synthetic activity simultaneously, therefore it appeared that IGF-I is related to the action of estrogen. Combination treatment of IGF-I and $17{\beta}-estradiol$ has effect on cell proliferation but this effect is lower than IGF-I or $17{\beta}-estradiol$ alone. However, combination treatment has not great effect on type I collagen or osteopontin gene expression thus little effect of cell differentiation.

  • PDF