• Title/Summary/Keyword: MBV

Search Result 12, Processing Time 0.016 seconds

Disease monitoring of Alaska pollock (Gadus chalcogrammus) based on growth stages (명태 (Gadus chalcogrammus)의 성장 단계별 질병 모니터링)

  • Kim, Kwang Il;Byun, Soon-Gyu;Kang, Hee Woong;Nam, Myung-Mo;Choi, Jin;Yoo, Hae-Kyun;Lee, Chu
    • Korean Journal of Ichthyology
    • /
    • v.29 no.1
    • /
    • pp.62-68
    • /
    • 2017
  • The Alaska pollock (Gadus chalcogrammus) belongs to the family Gadidae; it is a cold water fish, and has been developed as a novel aquaculture species in Korea. In this study, we describe ongoing surveillance for aquatic animal pathogens based on growth stages. We investigated bacterial flora in rearing water, and monitored pathogens; we also analyzed histopathological traits of abnormal fish. In rearing water, the total bacterial counts were $2.1{\times}10^3cfu/mL$ and Vibrio spp. (52%) were predominant in the larvae stage. In the juvenile and adult stages, the total bacterial counts were $3.4{\times}10^3$ and $3.2{\times}10^2cfu/mL$, respectively (with Pseudomonas sp. as the predominant species; 90% and 52%). This result revealed that the bacterial flora in rearing water changed depending on the feeding types. No virulent-bacteria or problematic viruses (VHSV, viral hemorrhagic septicemia virus; NNV, nervous necrosis virus; MBV, marine birnavirus) were detected from outwardly healthy fish using either culture or PCR assay. Some juveniles (less than 5%) had gas bubbles on the gill lamellae, degeneration of the corneal epithelium, and choroid gland degeneration, suggesting that these symptoms were caused by external injury and secondary infection by opportunistic bacteria. Disease management is important to cope with disease emergence in the novel aquaculture species Alaska pollock.

Comparison of pathogen detection from wild and cultured olive flounder, red sea bream, black sea bream and black rockfish in the coastal area of Korea in 2010 (2010년 한국 연근해 자연산과 양식산 넙치, 참돔, 감성돔, 조피볼락의 병원체 비교)

  • Park, Myoung Ae;Do, Jeung-Wan;Kim, Myoung Sug;Kim, Seok-Ryel;Kwon, Mun-Gyeong;Seo, Jung Soo;Song, Junyoung;Choi, Hye-Sung
    • Journal of fish pathology
    • /
    • v.25 no.3
    • /
    • pp.263-270
    • /
    • 2012
  • This study surveyed for the prevalence of parasites, bacteria and viruses in four fish species, olive flounder (Paralichthys olivaceus), red sea bream (Pagrus major), black sea bream (Acathopagrus schlegeli) and black rockfish (Sebastes schlegeli) in 2010. The survey was aimed to compare the pathogens detected from wild and cultured fish for an epidemiological study. Anisakis sp. was predominantly detected from wild olive flounder and red sea bream (58.6% and 41.7% respectively), but not from the cultured fishes, suggesting anisakid infection is rare in cultured fish. The wild fish get in contact with the anisakids through their prey such as small fishes or crustaceans which carry the anisakids; whereas the cultured fish are fed with formulated feed, free of anisakids. Bacterial detection rates from the wild fishes examined in the study were lower than those of cultured fishes. Vibrio sp. dominated among detected bacterial population in cultured olive flounder (18%). Since vibriosis is known as a secondary infection caused by other stressful factors such as parasitic infections, handling and chemical treatment, it seems that cultured olive flounder are exposed to stressful environment. Viruses diagnosed in the study showed difference in distribution between wild and cultured fishes; hirame rhabdovirus (HRV) (0.1%) and lymphocystis disease virus (LCDV) (3.9%) were detected in the cultured olive flounder, but not in the wild fish, and marine birnavirus (MBV) (1.7%) and red sea bream iridovirus (RSIV) (3.2%) were detected from the wild and cultured red sea bream, respectively. From the survey conducted, it can be concluded that even though some pathogens (Trichodina sp., Microcotyle sp., etc.) are detected from both the wild and cultured fish, pathogens such as Anisakis sp., Vibrio sp. and LCDV showed difference in distribution in the wild and cultured host of same fish species and this can be attributed to their environmental condition and feeding.