• Title/Summary/Keyword: MBT(minimum spark advance for best torque)

Search Result 20, Processing Time 0.029 seconds

Effect of Hydrogen Enriched LPG Fuelled Engine with Converted from a Diesel Engine

  • Choi, Gyeung-Ho;Lee, Jae-Cheon;Chung, Yon-Jong;Caton, Jerald;Han, Sung-Bin
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.139-145
    • /
    • 2006
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.8 to 1.3, and the ignition timing was controlled to be at MBT (minimum spark advance for best torque)

A Study on the Application of Indolene -MPHA for Automotive Alternative Fuel (II) - (자동차 대체연료로서의 Indolene-MPHA의 적용에 관한 연구(II) - Indolene-MPHA가 엔진성능에 미치는 영향 -)

  • 이민호;오율권;차경옥
    • Journal of Energy Engineering
    • /
    • v.12 no.3
    • /
    • pp.190-196
    • /
    • 2003
  • A study of the performance effect of Indolene-Methanol Plus High Alcolhols (MPHA) has been completed. The study invested the measurement of performance parameters. The performance parameters measured are minimum advance for best torque (MBT) spark timing, power output and thermal efficiency. The alcohol concentration was varied from 0 to 100 percent by volume in clear Indolene. The performance parameters were measured using a single cylinder spark ignition engine at different compression ratios. The results of the performance measurements indicated that Indolene-MPHA blends have a higher MBT spark advance, similar power output and lower thermal efficiencies than Indolene-Methanol blends.

A Study on the Fuel Characteristics and Engine Performance of Indolene - Methanol Alternative Fuel (인돌렌-메탄올 대체연료의 연료 특성과 엔진성능에 관한 연구)

  • Lee, Min-Ho;Oh, Yool-Kwon;Cha, Kyung-Ok
    • Journal of ILASS-Korea
    • /
    • v.9 no.4
    • /
    • pp.9-16
    • /
    • 2004
  • A study of the propeny and performance effect of Indolene - Methanol Plus High Alcolhols (MPHA) has been completed. This study invested the measurement of fuel properties and performance parameters. The fuel properties investigated are distillation characteristics, heating valuer flash point, specific gravity and water tolerance. The performance parameters measured are minimum advance for best torque (MBT) spark timing, power output. The alcohol concentration was varied from 0 to 100 percent by volume in clear Indolene. The measurement of fuel properties indicated that, in general, Indolene - MPHA blends have higher water tolerance, similar specific gravity, similar flash point and different distillation characteristics compared to Indolene - Methanol blends. The performance parameters were measured using a single cylinder spark ignition engine at different compression ratios. The results of the performance measurements indicated that Indolene - MPHA blends have a higher MBT spark advance, similar power output.

  • PDF

A Study on the Combustion Characteristics of Spark Plug with Pre-ignition Chamber (예연소실을 갖는 점화플러그의 연소 특성에 관한 연구)

  • Jie, Myoung-Seok;Kim, Jin-Hyuck;Yoo, Seong-Yeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.718-723
    • /
    • 2007
  • The new concept spark plug was developed to study its influence on the combustion characteristics of SI engine. It has pre-ignition chamber in the lower end of spark plug and flame hole, in which fresh mixture gas can be introduced without any fuel supply system. This spark plug was tested with a commercial SI engine. Fuel consumption rate, emission gas and MBT timing were measured in the engine dynamometer for various flame hole numbers, hole positions, hole sizes of the pre-ignition chamber of the spark plug. And average flame propagation speed was measured by using the head gasket ionization probe in single cylinder engine. The new concept spark plug induces fast bum in combustion compared with the conventional spark plug, and MBT(Minimum advance for Best Torque) timing was retarded about $3{\sim}5^{\circ}$ crank angle. The flame hole number, hole direction and volume of pre-ignition chamber were found to influence the combustion characteristics.

A Study on the Characteristics of Direct Injection Spark Ignition Engine using a Liquefied Petroleum Gas Fuel (LPG 연료를 이용한 직접분사식 스파크점화 엔진의 특성에 관한 연구)

  • Lee, Min-Ho;Jeong, Dong-Soo;Cha, Kyung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.44-51
    • /
    • 2005
  • According to the increasing concern on the global environment, the $CO_2$ regulation has been discussed including automobile emission regulation. In order to cope with this rapid changing circumstances, the development of an ultra low emission and super fuel economy automobile is essential. Direct injection LPG engine is the one of the possible future engine to maximize the engine efficiency. This experimental study for the development of direct injection LPG engine technology is promoted with two parts; spray characteristics of high pressure swirl injector, and performance characteristics of direct injection LPG engine. Engine characteristics according to the fuel was analyzed in order to establish stratified combustion technology for LPG engine by using the DISI engine. In the engine experiment, control system was manufactured for gasoline and LPG fuel. The engine was modified 2,000 cc GDI engine (fuel supply device, fuel injection device). Through this experiment, engine operating condition, engine speed and spark timing (MBT), fuel injection position, and fuel rate were investigated.

LPLi Engine Performance and Vehicle Exhaust Emission Characteristics (액상 분사 LPG 엔진 성능 및 차량 배기 배출물 특성에 관한 연구)

  • 임종훈;명차리;박심수;양승주
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.15-21
    • /
    • 2003
  • LPG is considered as one of the most prominent alternative automotive fuels in worldwide. However, conventional mixer system can not meet the emission regulations as the mileage accumulation increased. Recently, much attention is focused on the development of LPG liquid injection fuel systems to increase the engine performance and reduce the exhaust emissions. This study evaluates the LPLi(Liquid Phase LPG injection) engine performance and exhaust emission characteristics using a 3.0 liter LPG engine. The fuel supply system and engine management system were changed from FBM into LPLi to control the precise mixture ratio and optimized spark advance.

An Experimental Study on Performance Characteristics of a Hydrogen Fuelled Spark Ignition Engine

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.81-89
    • /
    • 2014
  • The purpose of this study is to obtain low-emission and high-efficiency in LPG engine with hydrogen enrichment. The objective of this paper is to clarify the effects of hydrogen enrichment in LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to avoid abnormal combustion. To maintain equal heating value of fuel blend, the amount of LPG was decreased as hydrogen was gradually added. The relative air-fuel ratio was increased from 0.76 to 1.5, and the ignition timing was controlled to be at minimum spark advance for best torque (MBT).

A Study on Mixture Composition and Combustion Characteristics in Gasoline Engine (가솔린 기관의 혼합기 조성과 연소 특성에 관한 연구)

  • Kim, Gi-Bok;Yoon, Chang-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • Recently the automobile engine has been developed in achieving the high performance, fuel economy, and emission reduction. In a conventional spark ignition engine the fuel and air are mixed together in the intake system, inducted through the intake valve into the cylinder, and then compressed. Under normal operating conditions, the combustion is initiated towards the end of the compression stroke at the spark plug by an electric discharge. Following inflammation, a flame develops and propagates through this premixed fuel-air mixture. Therefore the state of mixture is very important in the combustion and emission characteristics. In this study the combustion and emission characteristics were tested and analyzed with changing the mixture composition and engine operating parameters in order to improve the combustion and performance in engine.

Influence of Compression Ratio on Engine Performance in a LPG Engine Converted from a Diesel Engine (디젤엔진을 개조한 LPG엔진의 기관성능에 미치는 압축비의 영향)

  • Choi Gyeung Ho;Kim Jin Ho;Chung Yon Jong;Han Sung Bin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1178-1183
    • /
    • 2004
  • The purpose of this study was to investigate the influence of compression ratio on engine performance in a LPG(Liquefied Petroleum Gas) engine converted from a diesel engine. In ordor to determine the ideal compression ratio, a variable compression ratio 4-cylinder engine was developed. Retrofitting a diesel engine into a LPG engine is technically very complicated compared to a gasoline to LPG conversion. The cylinder head and the piston crown were modified to bum LPG in the engine. Compression ratios were increased from 8 to 10 in an increment of 0.5, the ignition timing was controlled to be at MBT(Minimum Spark Advance for Best Torque) for each case.

A Study on the Comparison of Fuel Combustion Characteristics between Gasoline and Liquified Petroleum Gas on SI Engine (SI 엔진에서의 가솔린과 액화석유가스 연료의 연소특성 비교 연구)

  • Park, S.C.;Ko, Y.N.;Kwon, Y.W.
    • Journal of Power System Engineering
    • /
    • v.12 no.4
    • /
    • pp.12-17
    • /
    • 2008
  • The purpose of this study is to analyse and compare the fuel combustion characteristics between LPG and gasoline on SI engine. Pressures of combustion chamber were measured on the state that engine speed was 2000rpm and BMEP was 2.0bar And we measured pressures of combustion chamber regarding variation of the MBT We could know that the combustion pressure of LPG fuel use engine is appeared lower than that of gasoline fuel use engine. At the lean mixture ratio area we could blow that Ignition timings are pulled very forward, and ignition timing of LPG fuel is advanced to $5\sim12^{\circ}$ CA than gasoline fuel. We learned that the value of coefficient of variation of LPG fuel is higher than gasoline fuel.

  • PDF