• Title/Summary/Keyword: MATLAB simulation

Search Result 1,410, Processing Time 0.033 seconds

Development of an Analysis Program for Small Horizontal Wind Turbines Considering Side Furling and Optimal Torque Scheduling (사이드 펄링과 최적 토크스케줄을 고려한 소형 풍력터빈 해석 프로그램 개발)

  • Jang, Hyeon-Mu;Kim, Dong-Myeong;Paek, In-Su
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.15-31
    • /
    • 2018
  • A program to design a small capacity wind turbine blade is proposed in this study. The program is based on a matlab GUI environment and designed to perform blade design based on the blade element momentum theory. The program is different from other simulation tools available in a point that it can analyze the side-furling power regulation mechanism and also has an algorithm to find out optimal torque schedule above the rated wind speed region. The side-furling power regulation is used for small-capacity horizontal axis wind turbines because they cannot use active pitch control due to high cost which is commonly used for large-capacity wind turbine. Also, the torque schedule above the rated wind speed region should be different from that of the large capacity wind turbines because active pitching is not used. The program developed in this study was validated with the results with FAST which is the only program that can analyze the performance of side-furled wind turbines. For the validation a commercial 10 kW wind turbine data which is available in the literature was used. From the validation, it was found that the performance prediction from the proposed simple program is close to those from FAST. It was also found that the optimal torque scheduling from the proposed program was found to increase the turbine power substantially. Further experimental validation will be performed as a future work.

Distributed Sensor Node Localization Using a Binary Particle Swarm Optimization Algorithm (Binary Particle Swarm Optimization 알고리즘 기반 분산 센서 노드 측위)

  • Fatihah, Ifa;Shin, Soo Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.9-17
    • /
    • 2014
  • This paper proposes a binary particle swarm optimization (BPSO) algorithm for distributed node localization in wireless sensor networks (WSNs). Each unknown node performs localization using the value of the measured distances from three or more neighboring anchors, i.e., nodes that know their location information. The node that is localized during the localization process is then used as another anchor for remaining nodes. The performances of particle swarm optimization (PSO) and BPSO in terms of localization error and computation time are compared by using simulations in Matlab. The simulation results indicate that PSO-based localization is more accurate. In contrast, BPSO algorithm performs faster for finding the location of unknown nodes for distributed localization. In addition, the effects of transmission range and number of anchor nodes on the localization error and computation time are investigated.

A Study on the Dynamic Positioning Control Algorithm Using Fuzzy Gain Scheduling PID Control Theory (퍼지게인 스케쥴링 PID 제어이론을 이용한 동적 위치 유지 제어기법에 관한 연구)

  • Jeon, Ma-Ro;Kim, Hee-Su;Kim, Jae-Hak;Kim, Su-Jeong;Song, Soon-Seok;Kim, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.2
    • /
    • pp.102-112
    • /
    • 2017
  • Many studies on dynamic positioning control algorithms using fixed feedback gains have been carried out to improve station keeping performance of dynamically positioned vessels. However, the control algorithms have disadvantages in that it can not cope with changes in environmental disturbances and response characteristics of vessels motion in real time. In this paper, the Fuzzy Gain Scheduling - PID(FGS - PID) control algorithm that can tune PID gains in real time was proposed. The FGS - PID controller that consists of fuzzy system and a PID controller uses weighted values of PID gains from fuzzy system and fixed PID gains from Ziegler - Nichols method to tune final PID gains in real time. Firstly, FGS - PID controller, control allocation algorithm, FPSO and environmental disturbances were modeled using Matlab/Simulink to evaluate station keeping performance of the proposed control algorithm. In addition, simulations that keep positions and a heading angle of vessel with wind, wave, current disturbances were carried out. From simulation results, the FGS - PID controller was confirmed to have better performances of keeping positions and a heading angle and consuming power than those of the PID controller. As a consequence, the proposed FGS - PID controller in this paper was validated to have more effectiveness to keep position and heading angle than that of PID controller.

Performance Evaluation of Wireless Networked Control System Based on IEEE 802.15.4e With Redundancy (중복 전송을 고려한 IEEE 802.15.4e기반 무선 네트워크 제어 시스템 성능 평가)

  • Yen, Bui Xuan;Lee, Wonhee;Kim, Youngsuk;Yoo, Myungsik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.572-580
    • /
    • 2013
  • IEEE 802.15.4e is a prospective standard for low latency control application in industries. This paper proposes a framework to evaluate the closed loop IEEE 802.15.4e based WNCS performance. The framework consists of two models: closed loop control system model and network model. The network model focuses on the PHY parameters of wireless link and takes the channel parameters into consideration. The PHY model combining with MAC model gives the control system model the probability of packet loss in a super-frame. In addition, redundancy mechanism is considered in IEEE 802.15.4e to reduce to data frame loss probability. The simulation is implemented in Matlab, PHY model takes the channel parameters from empirical results. Hence our evaluation gives insight into behavior of WNCS in different environments and it provides us a tool to design wireless network to achieve a good performance for control system.

An Adaptive Complementary Sliding-mode Control Strategy of Single-phase Voltage Source Inverters

  • Hou, Bo;Liu, Junwei;Dong, Fengbin;Mu, Anle
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.168-180
    • /
    • 2018
  • In order to achieve the high quality output voltage of single-phase voltage source inverters, in this paper an Adaptive Complementary Sliding Mode Control (ACSMC) is proposed. Firstly, the dynamics model of the single-phase inverter with lumped uncertainty including parameter variations and external disturbances is derived. Then, the conventional Sliding Mode Control (SMC) and Complementary Sliding Mode Control (CSMC) are introduced separately. However, when system parameters vary or external disturbance occurs, the controlling performance such as tracking error, response speed et al. always could not satisfy the requirements based on the SMC and CSMC methods. Consequently, an ACSMC is developed. The ACSMC is composed of a CSMC term, a compensating control term and a filter parameters estimator. The compensating control term is applied to compensate for the system uncertainties, the filter parameters estimator is used for on-line LC parameter estimation by the proposed adaptive law. The adaptive law is derived using the Lyapunov theorem to guarantee the closed-loop stability. In order to decrease the control system cost, an inductor current estimator is developed. Finally, the effectiveness of the proposed controller is validated through Matlab/Simulink and experiments on a prototype single-phase inverter test bed with a TMS320LF28335 DSP. The simulation and experimental results show that compared to the conventional SMC and CSMC, the proposed ACSMC control strategy achieves more excellent performance such as fast transient response, small steady-state error, and low total harmonic distortion no matter under load step change, nonlinear load with inductor parameter variation or external disturbance.

Photovoltaic Modified β-Parameter-based MPPT Method with Fast Tracking

  • Li, Xingshuo;Wen, Huiqing;Jiang, Lin;Lim, Eng Gee;Du, Yang;Zhao, Chenhao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Maximum power point tracking (MPPT) is necessary for photovoltaic (PV) power system application to extract the maximum possible power under changing irradiation and temperature conditions. The β-parameter-based method has many advantages over conventional MPPT methods; such advantages include fast tracking speed in the transient stage, small oscillations in the steady state, and moderate implementation complexity. However, a problem in the implementation of the conventional beta method is the choice of an appropriate scaling factor N, which greatly affects both the steady-state and transient performance. Therefore, this paper proposes a modified β-parameter-based method, and the determination of the N is discussed in detail. The study shows that the choice of the scaling factor N is determined by the changes of the value of β during changes in irradiation or temperature. The proposed method can respond accurately and quickly during changes in irradiation or temperature. To verify the proposed method, a photovoltaic power system with MPPT function was built in Matlab/Simulink, and an experimental prototype was constructed with a solar array emulator and dSPACE. Simulation and experimental results are illustrated to show the advantages of the improved β-parameter-based method with the optimized scaling factor.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

Characteristics Analysis of CVT with Built-in Crank for Bicycle (자전거용 크랭크 일체형 자동변속기에 대한 특성 해석)

  • Baek, Seung-Yub
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.963-969
    • /
    • 2015
  • Bicycle is one of the most popular mode of transport due to the increase of interest in the well-being and environment pollution. Before fabricating a continuously variable transmission that is applied to the actual bicycle, for reducing the problems in the early stage, the reliable simulation program has been applied and the financial problem can be solved. In this paper, in order to confirm the design factor, the stress analysis has been applied. In all models, each link and the joint portion are assumed to be a major design factors, and impact of each link and joints received stress during the operation and it is confirmed by using the CAE. Also, for the analysis region, the special code has been developed to calculate pulsation phenomenon through appropriate mathematical modeling.

Comparison of Artificial Neural Network for Partial Discharge Diagnosis (부분방전 진단을 위한 인공신경망 기법의 비교)

  • Chung, Gyo-Bum;Kwack, Sun-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4455-4461
    • /
    • 2013
  • This paper investigates the diagnosis performance of Artificial Neural Network (ANN) depending on the structure and the input vector type of ANN, which has been used to detect the partial discharge to lead to the electric machinery deterioration. The diagnosis performance of one hidden layer and two hidden layer in ANN are compared. The performance using the 2048 time-series data and the performance using the feature input vector are compared. For measuring the partial discharge signal, the tip-to-plate, the sphere-to-sphere, the tip-to-tip, the tip-to-sphere and the sphere-to-plate electrodes are used respectively. For ANN's learning, Matlab and C-code program are used. For evaluating the diagnosis performance of ANNs, the simulation studies are performed.

Islanding Detection Method for Grid-connected PV System using Automatic Phase-shift (자동 위상 이동을 이용한 계통 연계형 태양광 발전 시스템의 고립운전 검출기법)

  • Yun, Jung-Hyeok;Choi, Jong-Woo;So, Jung-Hun;Yu, Gwon-Jong;Kim, Heung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2007
  • Islanding of PV systems occurs when the utility grid is removed but the PV systems continue to operate and provide power to local loads. Islanding is one of the serious problems in an electric power system connected with dispersed power sources. This can present safety hazards and the possibility of damage to other electric equipments. In the passive method, the voltage and frequency of PCC are measured and it determines islanding phenomena if their values excess the allowed limits. If the real and reactive power of RLC load and those of the PV system are closely matched, islanding phenomena can't be detected by the passive methods. Several active methods were proposed to detect islanding operation in the region where the passive method can not detect it. The most effective method is SFS method which was suggested by Sandia National Laboratory. In this paper, a new islanding detection method using automatic phase-shift is proposed and its validity is verified through the simulation and experimental results.