• Title/Summary/Keyword: MATLAB

Search Result 3,211, Processing Time 0.029 seconds

Flow Simulation of High Flow Concrete using Incompressible Smoothed Particle Hydrodynamics (ISPH) Method (ISPH 기법을 이용한 고유동 콘크리트의 유동 해석)

  • Kim, Sang-Sin;Chung, Chul-Woo;Lee, Chang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • A three-dimensional flow simulation model for high flow concrete was developed using Incompressible Smoothed Particle Hydrodynamics (ISPH), which can solved Navier-Stokes equation with the assumption of a fluid to be incompressible. For the simulation, a computer program code for ISPH was implemented with MATALB programming code. A piecewise cubic spline function was used for the kernel function of ISPH. Projetion method was used to calculate the velocity and pressure of particles as a function of time. Fixed ghost particle was used for wall boundary condition. Free surface boundaries were determined by using virtual density of particles. In order to validate the model and the code, the simulation results of slump flow test, $T_{500}$ test and L-box test were compared with experimental ones. The simulation results were well matched with the experimental results. The simulation described successfully the characteristics of the flow phenomenon according to the change of the viscosity and yield stress of high flow concrete.

Optimization of the Groove Depth of a Sealing-type Abutment for Implant Using a Genetic Algorithm (유전자알고리즘을 이용한 임플란트용 실링어버트먼트의 홈 깊이 최적화에 관한 연구)

  • Lee, Hyeon-Yeol;Hong, Dae-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.24-30
    • /
    • 2018
  • Dental implants are currently widely used as artificial teeth due to their good chewing performance and long life cycle. A dental implant consists of an abutment as the upper part and a fixture as the lower part. When chewing forces are repeatedly applied to a dental implant, gap at the interface surface between the abutment and the fixture is often occurred, and results in some deteriorations such as loosening of fastening screw, dental retraction and fixture fracture. To cope with such problems, a sealing-type abutment having a number of grooves along the conical-surface circumference was previously developed, and shows better sealing performance than the conventional one. This study carries out optimization of the groove shape by genetic algorithm(GA) as well as structural analysis in consideration of external chewing force and pretension between the abutment and the fixture. The overall optimization system consists of two subsystems; the one is the genetic algorithm with MATLAB, and the other is the structural analysis with ANSYS. Two subsystems transmit and receive the relevant data with each other throughout the optimization processes. The optimization result is then compared with that of the conventional one with respect to the contact pressure and the maximum stress. The result shows that the optimized model gives better sealing performance than the conventional sealing abutment.

Agent Based Information Security Framework for Hybrid Cloud Computing

  • Tariq, Muhammad Imran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.406-434
    • /
    • 2019
  • In general, an information security approach estimates the risk, where the risk is to occur due to an unusual event, and the associated consequences for cloud organization. Information Security and Risk Management (ISRA) practices vary among cloud organizations and disciplines. There are several approaches to compare existing risk management methods for cloud organizations but their scope is limited considering stereo type criteria, rather than developing an agent based task that considers all aspects of the associated risk. It is the lack of considering all existing renowned risk management frameworks, their proper comparison, and agent techniques that motivates this research. This paper proposes Agent Based Information Security Framework for Hybrid Cloud Computing as an all-inclusive method including cloud related methods to review and compare existing different renowned methods for cloud computing risk issues and by adding new tasks from surveyed methods. The concepts of software agent and intelligent agent have been introduced that fetch/collect accurate information used in framework and to develop a decision system that facilitates the organization to take decision against threat agent on the basis of information provided by the security agents. The scope of this research primarily considers risk assessment methods that focus on assets, potential threats, vulnerabilities and their associated measures to calculate consequences. After in-depth comparison of renowned ISRA methods with ABISF, we have found that ISO/IEC 27005:2011 is the most appropriate approach among existing ISRA methods. The proposed framework was implemented using fuzzy inference system based upon fuzzy set theory, and MATLAB(R) fuzzy logic rules were used to test the framework. The fuzzy results confirm that proposed framework could be used for information security in cloud computing environment.

Experimental and statistical analysis of hybrid-fiber-reinforced recycled aggregate concrete

  • Tahmouresi, Behzad;Koushkbaghi, Mahdi;Monazami, Maryam;Abbasi, Mahdi Taleb;Nemati, Parisa
    • Computers and Concrete
    • /
    • v.24 no.3
    • /
    • pp.193-206
    • /
    • 2019
  • Although concrete is the most widely used construction material, its deficiency in shrinkage and low tensile resistance is undeniable. However, the aforementioned defects can be partially modified by addition of fibers. On the other hand, possibility of adding waste materials in concrete has provided a new ground for use of recycled concrete aggregates in the construction industry. In this study, a constant combination of recyclable coarse and fine concrete aggregates was used to replace the corresponding aggregates at 50% substitution percentage. Moreover, in order to investigate the effects of fibers on mechanical and durability properties of recycled aggregate concrete, the amounts of 0.5%, 1%, and 1.5% steel fibers (ST) and 0.05%, 0.1% and 0.15% polypropylene (PP) fibers by volumes were used individually and in hybrid forms. Compressive strength, tensile strength, flexural strength, ultrasonic pulse velocity (UPV), water absorption, toughness, elastic modulus and shrinkage of samples were investigated. The results of mechanical properties showed that PP fibers reduced the compressive strength while positive impact of steel fibers was evident both in single and hybrid forms. Tensile and flexural strength of samples were improved and the energy absorption of samples containing fibers increased substantially before and after crack presence. Growth in toughness especially in hybrid fiber-reinforced specimens retarded the propagation of cracks. Modulus of elasticity was decreased by the addition of PP fibers while the contrary trend was observed with the addition of steel fibers. PP fibers decreased the ultrasonic pulse velocity slightly and had undesirable effect on water absorption. However, steel fiber caused negligible decline in UPV and a small impact on water absorption. Steel fibers reduce the drying shrinkage by up to 35% when was applied solely. Using fibers also resulted in increasing the ductility of samples in failure. In addition, mechanical properties changes were also evaluated by statistical analysis of MATLAB software and smoothing spline interpolation on compressive, flexural, and indirect tensile strength. Using shell interpolation, the optimization process in areas without laboratory results led to determining optimal theoretical points in a two-parameter system including steel fibers and polypropylene.

Temperature distribution of ceramic panels of a V94.2 gas turbine combustor under realistic operation conditions

  • Namayandeh, Mohammad Javad;Mohammadimehr, Mehdi;Mehrabi, Mojtaba
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.117-135
    • /
    • 2019
  • The lifetime of a gas turbine combustor is typically limited by the durability of its liner, the structure that encloses the high-temperature combustion products. The primary objective of the combustor thermal design process is to ensure that the liner temperatures do not exceed a maximum value set by material limits. Liner temperatures exceeding these limits hasten the onset of cracking which increase the frequency of unscheduled engine removals and cause the maintenance and repair costs of the engine to increase. Hot gas temperature prediction can be considered a preliminary step for combustor liner temperature prediction which can make a suitable view of combustion chamber conditions. In this study, the temperature distribution of ceramic panels for a V94.2 gas turbine combustor subjected to realistic operation conditions is presented using three-dimensional finite difference method. A simplified model of alumina ceramic is used to obtain the temperature distribution. The external thermal loads consist of convection and radiation heat transfers are considered that these loads are applied to flat segmented panel on hot side and forced convection cooling on the other side. First the temperatures of hot and cold sides of ceramic are calculated. Then, the thermal boundary conditions of all other ceramic sides are estimated by the field observations. Finally, the temperature distributions of ceramic panels for a V94.2 gas turbine combustor are computed by MATLAB software. The results show that the gas emissivity for diffusion mode is more than premix therefore the radiation heat flux and temperature will be more. The results of this work are validated by ANSYS and ABAQUS softwares. It is showed that there is a good agreement between all results.

Modeling of low-dimensional pristine and vacancy incorporated graphene nanoribbons using tight binding model and their electronic structures

  • Wong, K.L.;Chuan, M.W.;Chong, W.K.;Alias, N.E.;Hamzah, A.;Lim, C.S.;Tan, M.L.P.
    • Advances in nano research
    • /
    • v.7 no.3
    • /
    • pp.209-221
    • /
    • 2019
  • Graphene, with impressive electronic properties, have high potential in the microelectronic field. However, graphene itself is a zero bandgap material which is not suitable for digital logic gates and its application. Thus, much focus is on graphene nanoribbons (GNRs) that are narrow strips of graphene. During GNRs fabrication process, the occurrence of defects that ultimately change electronic properties of graphene is difficult to avoid. The modelling of GNRs with defects is crucial to study the non-idealities effects. In this work, nearest-neighbor tight-binding (TB) model for GNRs is presented with three main simplifying assumptions. They are utilization of basis function, Hamiltonian operator discretization and plane wave approximation. Two major edges of GNRs, armchair-edged GNRs (AGNRs) and zigzag-edged GNRs (ZGNRs) are explored. With single vacancy (SV) defects, the components within the Hamiltonian operator are transformed due to the disappearance of tight-binding energies around the missing carbon atoms in GNRs. The size of the lattices namely width and length are varied and studied. Non-equilibrium Green's function (NEGF) formalism is employed to obtain the electronics structure namely band structure and density of states (DOS) and all simulation is implemented in MATLAB. The band structure and DOS plot are then compared between pristine and defected GNRs under varying length and width of GNRs. It is revealed that there are clear distinctions between band structure, numerical DOS and Green's function DOS of pristine and defective GNRs.

Mathematical Model and Design Optimization of Reduction Gear for Electric Agricultural Vehicle

  • Pratama, Pandu Sandi;Byun, Jae-Young;Lee, Eun-Suk;Keefe, Dimas Harris Sean;Yang, Ji-Ung;Chung, Song-Won;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In electric agricultural machine the gearbox is used to increase torque and lower the output speed of the motor shaft. The gearbox consists of several shafts, helical gears and spur gears works in series. Optimization plays an important role in gear design as reducing the weight or volume of a gear set will increase its service life and improve the bearing capacity. In this paper the basic design parameters for gear like shaft diameter and face width are considered as the input variables. The bending stress and material volume is considered as the objective function. ANSYS was used to investigate the bending stress when the variable was changed. Artificial Neural Network (ANN) was used to obtain the mathematical model of the system based on the bending stress behaviour. The ANN was used since the output system is nonlinear. The Genetic Algorithm (GA) technique of optimization is used to obtain the optimized values of shaft diameter and face width on the pinion based on the ANN mathematical model and the results are compared as that obtained using the traditional method. The ANN and GA were performed using MATLAB. The simulation results were shown that the proposed algorithm was successfully calculated the value of shaft diameter and face width to obtain the minimal bending stress and material volume of the gearbox.

Investigations of Multi-Carrier Pulse Width Modulation Schemes for Diode Free Neutral Point Clamped Multilevel Inverters

  • Chokkalingam, Bharatiraja;Bhaskar, Mahajan Sagar;Padmanaban, Sanjeevikumar;Ramachandaramurthy, Vigna K.;Iqbal, Atif
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.702-713
    • /
    • 2019
  • Multilevel Inverters (MLIs) are widely used in medium voltage applications due to their various advantages. In addition, there are numerous types of MLIs for such applications. However, the diode-less 3-level (3L) T-type Neutral Point Clamped (NPC) MLI is the most advantageous due to its low conduction losses and high potential efficiency. The power circuit of a 3L T-type NPC is derived by the conventional two level inverter by a slight modification. In order to explore the MLI performance for various Pulse Width Modulation (PWM) schemes, this paper examines the operation of a 3L (five level line to line) T-type NPC MLI for various types of Multi-Carriers Pulse Width Modulation (MCPWM) schemes. These PWM schemes are compared in terms of their voltage profile, total harmonic distortion (THD) and conduction losses. In addition, a 3L T-type NPC MLI is also compared with the conventional NPC in terms of number of switches, clamping diodes, main diodes and capacitors. Moreover, the capacitor-balancing problem is also investigated using the Neutral Point Fluctuation (NPF) method with all of the MCPWM schemes. A 1kW 3L T-type NPC MLI is simulated in MATLAB/Simulink and implemented experimentally and its performance is tested with a 1HP induction motor. The results indicate that the 3L T-type NPC MLI has better performance than conventional NPC MLIs.

Transport of Water through Polymer Membrane in Proton Exchange Membrane Fuel Cells (고분자전해질 연료전지에서 고분자막을 통한 물의 이동)

  • Lee, Daewoong;Hwang, Byungchan;Lim, Daehyun;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.338-343
    • /
    • 2019
  • The water transport and water content of the electrolyte membrane greatly affect the performance of the membrane in PEMFC(Proton Exchange Membrane Fuel Cell). In this study, the parameters (electroosmotic coefficient, water diffusion coefficient) of polymer membranes for water transport were measured by a simple method, and water flux and ion conductivity were simulated by using a model equation. One dimensional steady state model equation was constructed by using only the electro-osmosis and diffusion as the driving force of water transport. The governing equations were simulated with MATLAB. The electro-osmotic coefficient of $144{\mu}m$ thick polymer membranes was measured in hydrogen pumping cell, the value was 1.11. The water diffusion coefficient was expressed as a function of relative humidity and the activation energy for water diffusion was $2,889kJ/mol{\cdot}K$. The water flux and ion conductivity results simulated by applying these coefficients showed good agreement with the experimental data.

Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications

  • Chuan, M.W.;Lau, J.Y.;Wong, K.L.;Hamzah, A.;Alias, N.E.;Lim, C.S.;Tan, M.L.P
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.415-422
    • /
    • 2021
  • Silicene, a 2D allotrope of silicon, is predicted to be a potential material for future transistor that might be compatible with present silicon fabrication technology. Similar to graphene, silicene exhibits the honeycomb lattice structure. Consequently, silicene is a semimetallic material, preventing its application as a field-effect transistor. Therefore, this work proposes the uniform doping bandgap engineering technique to obtain the n-type silicene nanosheet. By applying nearest neighbour tight-binding approach and parabolic band assumption, the analytical modelling equations for band structure, density of states, electrons and holes concentrations, intrinsic electrons velocity, and ideal ballistic current transport characteristics are computed. All simulations are done by using MATLAB. The results show that a bandgap of 0.66 eV has been induced in uniformly doped silicene with phosphorus (PSi3NW) in the zigzag direction. Moreover, the relationships between intrinsic velocity to different temperatures and carrier concentration are further studied in this paper. The results show that the ballistic carrier velocity of PSi3NW is independent on temperature within the degenerate regime. In addition, an ideal room temperature subthreshold swing of 60 mV/dec is extracted from ballistic current-voltage transfer characteristics. In conclusion, the PSi3NW is a potential nanomaterial for future electronics applications, particularly in the digital switching applications.