• Title/Summary/Keyword: MARTE

Search Result 3, Processing Time 0.021 seconds

Extension of MARTE Profile for Model-based Power Consumption Analysis of Embedded Software with UML 2.0 (UML 2.0을 사용한 모델 기반의 임베디드 소프트웨어 소모 전력 분석을 위한 MARTE Profile의 확장)

  • Pyeon, Ho-Rim;Kim, Jong-Phil;Hong, Jang-Eui
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.4
    • /
    • pp.252-263
    • /
    • 2010
  • The needs of low-power embedded software are being increased. Along with the needs, the studies to predict the power consumption of embedded software are also being increased. Although existing studies for power analysis have been performed in source code-based, these code-based analysis have some shortages of long analysis time and much feedback efforts. Recently some studies of power analysis based on software models are prompted. This paper describes on the model-based approach using UML diagrams in embedded software development process. Specially we focus on the extension of OMG's MARTE Profile to support model-based analysis. The MARTE extension gives the possibility of power analysis using just UML diagrams without any other analysis model in embedded software development.

An Adaptive and Real-Time System for the Analysis and Design of Underground Constructions

  • Gutierrez, Marte
    • Geotechnical Engineering
    • /
    • v.26 no.9
    • /
    • pp.33-47
    • /
    • 2010
  • Underground constructions continue to provide challenges to Geotechnical Engineers yet they pose the best opportunities for development and deployment of advance technologies for analysis, design and construction. The reason for this is that, by virtue of the nature of underground constructions, more data and information on ground characteristics and response become available as the construction progresses. However, due to several barriers, these data and information are rarely, if ever, utilized to modify and improve project design and construction during the construction stage. To enable the use of evolving realtime data and information, and adaptively modify and improve design and construction, the paper presents an analysis and design system, called AMADEUS, for underground projects. AMADEUS stands for Adaptive, real-time and geologic Mapping, Analysis and Design of Underground Space. AMADEUS relies on recent advances in IT (Information Technology), particularly in digital imaging, data management, visualization and computation to significantly improve analysis, design and construction of underground projects. Using IT and remote sensors, real-time data on geology and excavation response are gathered during the construction using non-intrusive techniques which do not require expensive and time-consuming monitoring. The real-time data are then used to update geological and geomechanical models of the excavation, and to determine the optimal, construction sequences and stages, and structural support. Virtual environment (VE) systems are employed to allow virtual walk-throughs inside an excavation, observe geologic conditions, perform virtual construction operations, and investigate stability of the excavation via computer simulation to steer the next stages of construction.

  • PDF