• Title/Summary/Keyword: MAPKs pathway

Search Result 111, Processing Time 0.024 seconds

Ethanol Extract of Saussurea lappa Root Induces Apoptosis through an ROS-MAPKs-Linked Cascade (목향에탄올추출물의 ROS-MAPKs 경로를 통한 세포사멸 유도)

  • Kim, Dae-Sung;Lee, Sung-Jin;Lee, Jang-Cheon;Woo, Won-Hong;Lim, Kyu-Sang;Mun, Yeun-Ja
    • YAKHAK HOEJI
    • /
    • v.56 no.3
    • /
    • pp.173-179
    • /
    • 2012
  • Saussurea lappa (SL) and major compounds, sesquiterpene lactones, have been suggested to possess various biological effects, including anti-tumor, anti-ulcer, anti-inflammatory, anti-viral and cardiotonic activities. Therefore, the ethanol extract of Saussurea lappa root (ESL) is studied for the mechanism of its action in apoptotic pathway. ESL-treated cells manifested nuclear condensation, and fragmentation. ESL also triggered the mitochondrial apoptotic pathway, as indicated by a change in Bax/Bcl2 ratio and caspase-9/-3 activation. ESL induced p38 MAPK/JNK, p53, and ASK1 phosphorylation. ROS scavenger reversed ESL-induced apoptotic cell death via inhibition of caspase-3 and p38 MAPK/JNK phosphorylation. These results suggest that ESL induced apoptosis in HepG2 cells through the ROS-p38/JNK pathway.

Specific Binding and Catalytic Activation of the MAPK-MKP Complex

  • Kim, Myeongbin;Ryu, Seong Eon
    • Biodesign
    • /
    • v.6 no.4
    • /
    • pp.79-83
    • /
    • 2018
  • Mitogen-activated protein kinases (MAPKs) are one of the most important enzymes in various cellular activities, and the MAPK signaling pathway is implicated in many disorders. MAPK phosphatases (MKPs) are regulators that contain a MAPK-binding domain (MBD) for MAPK recognition, and a catalytic domain (CD), for dephosphorylation and inactivation of MAPKs. Due to their crucial role in regulating the MAPK pathway, MKPs are regarded as a potential drug target in various diseases. Attempts have also been made to regulate the MAPK pathway by reducing the MKP activity. For drug development, it is important to understand the key features of MAPK-MKP complex formation. This review summarizes the studies on MAPK-MKP complexes, mainly focusing on their selective recognition and catalytic activation.

Effect of Fruits from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee on Macrophage Activation (산돌배(Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee) 열매의 대식세포 활성화 유도 활성)

  • Geum, Na Gyeong;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.377-383
    • /
    • 2021
  • In this study, we investigated in vitro immunostimulatory activity of fruit extracts from Pyrus ussuriensis var. hakunensis (Nakai) T.B. Lee (PUF) using mouse macrophage RAW264.7 cells. PUF increased the production of immunostimulatory factors such as NO, iNOS, IL-1β, IL-6 and TNF-α, and phagocytic activity in RAW264.7 cells. The inhibition of TLR2 and TLR4 blocked PUF-mediated production of immunostimulatory factors in RAW264.7 cells. In addition, the inhibition of MAPKs signaling pathway reduced PUF-mediated production of immunostimulatory factors. From these results, PUF may have immunostimulatory activity via TLR2/4-mediated activation of MAPKs signaling pathway. Therefore, PUF expected to be used as a potential immune-enhancing agent.

Esculetin Suppresses the Growth and Proliferation of A431 Skin Cancer Cells via the MAPKs Pathway (A431 skin cancer cell에서 Esculetin의 MAPKs pathway를 통한 항암 효과)

  • Jin Young, Sung;Yong Min, Kim
    • Korean Journal of Pharmacognosy
    • /
    • v.53 no.4
    • /
    • pp.181-191
    • /
    • 2022
  • As the incidence of skin cancer increases every year, non-surgical treatment methods for cancer are being sought. Esculetin, a natural dihydroxy coumarin, is attracting attention as a therapeutic agent for certain diseases, such as cancer, based on its broad pharmacological activity. In this study, the anticancer ability of esculetin was evaluated using the epidermoid carcinoma cell line A431. As a result of evaluating the apoptosis ability of esculetin by MTT assay, apoptosis was observed in a time-concentration-dependent manner regardless of the presence or absence of FBS. As a result of quantitative real-time PCR, esculetin reduced cyclin D1 mRNA in a time-concentration-dependent manner. In addition, as a result of western blotting, esculetin significantly inhibited phosphorylation of ERK, JNK, and p38 in a concentration-dependent manner. The results of this study suggest that esculetin has the potential to be used as an effective natural medicine for the treatment of skin cancer.

Combination of Grapefruit and Rosemary Extracts Has Skin Protective Effect through MMPs, MAPKs, and the NF-κB Signaling Pathway In Vitro and In Vivo UVB-exposed Model

  • Yoon, Yeo-Cho;Choi, Hee-Jeong;Park, Ji-Hyun;Diniyah, Nurud;Shin, Hyun-A;Kim, Mi-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.633-643
    • /
    • 2019
  • Long-term ultraviolet (UV) exposure accelerates the phenomenon of skin photo-aging by activating collagenase and elastase. In this study, we aimed to investigate the effects of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-irradiated damage in HaCaT cells and dorsal mouse skin. In HaCaT cells, cG&Re recovered UVB-reduced cell viability and inhibited protein expression of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases (p-Erk), c-Jun N-terminal kinases (p-JNK), and a class of MAPKs (p-P38). Also, cG&Re suppressed UVB-induced collagen and elastin degradation by decreasing matrix metalloproteinases (MMPs) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) expression, which is a transcription factor. Similar results were observed in dorsal mouse skin. Taken together, our data indicate that cG&Re prevent UVB-induced skin photo-aging due to collagen/elastin degradation via activation of MAPKs, MMPs, and the NF-κB signaling pathway in vitro and in vivo.

Eupatilin downregulates phorbol 12-myristate 13-acetate-induced MUC5AC expression via inhibition of p38/ERK/JNK MAPKs signal pathway in human airway epithelial cells

  • Cheon, Yoon-Hee;Kim, Min Seob;Kim, Ju-Young;Kim, Dong Hyun;Han, Seung Yoon;Lee, Jae-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Chronic inflammatory airway diseases, such as chronic rhinosinusitis, chronic obstructive pulmonary disease, and asthma, are associated with excessive mucus production. Hence, the regulation of mucus production is important for the treatment of upper and lower airway diseases. Eupatilin is a pharmacologically active ingredient obtained from Artemisia asiatica Nakai (Asteraceae) and exerts potent anti-inflammatory, anti-allergic, and anti-tumor activities. In the present study, we investigated the effect of eupatilin on phorbol 12-myristate 13-acetate (PMA)-induced MUC5AC and MUC5B expression in human airway epithelial cells. We found that eupatilin treatment significantly inhibited PMA-induced mucus secretion in PAS staining. In addition, qRT-PCR results showed that eupatilin dose-dependently decreased the mRNA expression of MUC5AC in human airway epithelial cells. Western blot and immunofluorescence assay also showed that PMA-induced protein expression of MUC5AC was inhibited by eupatilin treatment. Finally, we investigated MAPKs activity after stimulation with PMA using western blot analysis in human airway epithelial cells. The results showed that eupatilin downregulated the levels of phosphorylated p38, ERK, and JNK. In summary, the anti-inflammatory activities of eupatilin, characterized as the suppression of MUC5AC expression and secretion in human airway epithelial cells, were found to be associated with the inhibition of p38/ERK/JNK MAPKs signaling pathway of MUC5AC secretion.

Mitogen-Activated Protein Kinases (MAPKs) Mediate SIN-1/ Glucose Deprivation-Induced Death in Rat Primary Astrocytes

  • Yoo Byoung-Kwon;Choi Ji-Woong;Choi Min-Sik;Ryu Mi-Kyoung;Park Gyu-Hwan;Jeon Mi-Jin;Ko Kwang-Ho
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.942-947
    • /
    • 2005
  • Peroxynitrite is a potent neurotoxic molecule produced from a reaction between NO and super-oxide and induces NO-mediated inflammation under neuropathological conditions. Previously, we reported that glucose deprivation induced ATP depletion and cell death in immunostimulated astrocytes, which was mainly due to peroxynitrite. In this study, the role of MAPKs (ERK1/2, p38MAPK, and JNK/SAPK) signal pathway in the SIN-1/glucose deprivation-induced death of astrocytes was examined. A combined treatment with glucose deprivation and $50 {\mu}M$ SIN-1, an endogenous peroxynitrite generator, rapidly and markedly increased the death in rat primary astrocytes. Also, SIN-1/glucose deprivation resulted in the activation of MAPKs, which was significantly blocked by the treatment with $20{\mu}M$ MAPKs inhibitors (ERK1/2, PD98059; p38MAPK, SB203580; JNK/SAPK, SP600125). Interestingly, SIN-1/glucose deprivation caused the loss of intracellular ATP level, which was significantly reversed by MAPKs inhibitors. These results suggest that the activation of MAPKs plays an important role in SIN-1/glucose deprivation-induced cell death by regulating the intracellular ATP level.

Anti-inflammatory and Anti-oxidative Effects of Rumex acetosa L. in RAW 264.7 (RAW 264.7 에서 MAPKs 경로를 통한 Rumex acetosa L.의 항염증, 항산화 효과)

  • Sung, Jin Young;Kim, Yong Min
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.213-223
    • /
    • 2022
  • In this study, the anti-inflammatory and antioxidant effects of aerial parts of Rumex acetosa L. extract were confirmed to prevent various inflammatory diseases and skin aging caused by excessive oxidative stress. As a result of ABTS assay, it was confirmed that the radical scavenging ability increased in a concentration-dependent manner. ROS inhibitory ability was confirmed through DCF-DA assay, and concentration-dependent inhibition of ROS production was confirmed. The effect of inhibiting cell nuclear damage according to ROS was confirmed through DAPI staining. In addition, it was confirmed that the mRNA expression levels of iNOS and COX-2 were inhibited in a concentration-dependent manner through qPCR. As a result of confirming the protein levels of iNOS and COX-2 by western blotting, iNOS was significantly decreased at all concentrations, and COX-2 was significantly decreased at 800 ㎍/mL. The inhibitory effect on the production of NO generated by iNOS was confirmed by NO assay, and NO was decreased in a concentration-dependent manner. In addition, phosphorylation of ERK and JNK in the MAPKs signaling pathway were inhibited. Therefore, Rumex acetosa L. has the potential to be used as an anti-inflammatory and antioxidant cosmetic raw material by showing anti-inflammatory and antioxidant effects through the MAPKs pathway.

Effect of Garlic Extract on the Activation Pattern of MAPK Signaling in the Rat Heart After a Bout Exercise (마늘추출물이 운동부하 흰쥐의 심장내 MAPK signaling 활성에 미치는 영향)

  • Lee, Jun-Hyuk;Chung, Kyung-Tae;Lee, Yang-Tae;Choi, Yung-Hyun;Choi, Byung-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.5
    • /
    • pp.1299-1303
    • /
    • 2008
  • Since exercise training induces mechanical stress to the heart, we examined the activation pattern of mitogen-activated protein kinase(MAPK)s signaling pathway by immunohistochemistry. The immunoreactions of MAPKs signaling with c-fos and Schiff's reaction were increased in the cardiac muscle of exercised rat compared to normal one except immunoreaction for MEK1/2 and ERK1/2 and p38. However, the immunoreaction of phospho-JNK and phospho-p38 with early gene c-fos were arrested markedly in water extract of Alliium sativum (WEAS) treated rat compared to exercised one. Since MAPKs signaling does play a protective role in response to pathological stimulus in the heart, results in the present study suggest that WEAS may act as a alleviating agent for exercise-induced stress to. heart through regulating MAPKs signaling activation.

Immune enhancing activity of Sargassum horneri extracts via MAPK pathway in macrophages (대식세포에서 괭생이모자반 추출물의 MAPKs 기전 통한 면역활성 증가 효과)

  • 김동섭;김민지;성낙윤;한인준;김건;김춘성;유영춘;정윤우
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.12-23
    • /
    • 2023
  • Sargassum horneri (SH), a brown macroalgae, has medicinal properties. The present study investigated the immune-enhancing effects of SH extract on peritoneal macrophages (PM). The SH significantly increased the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in PM. It was confirmed that SH significantly increased NO expression through the increase of iNOS protein expression, which is the up-regulation pathway. Additionally, it was determined if SH activates the mitogen-activated protein kinase (MAPK) pathway, an upper regulatory mechanism that influences TNF-α, IL-6, and NO expression. Consequently, SH significantly increased the phosphorylation of p38, extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinase (JNK), all of which are MAPK pathway proteins. Moreover, the immune-enhancing effects of SH on another macrophage cell line, bone marrow-derived macrophages were investigated. It was observed that SH significantly enhanced TNF-α, IL-6, and NO production. Overall, this study demonstrates the immune-enhancing effects of SH on macrophages via activated MAPK pathway. Therefore, it suggests that SH has the potential to improve immunological activity in various macrophage cell lines and can be useful as an immune-enhancing treatment.