• Title/Summary/Keyword: MAPK/AKT signaling pathway

Search Result 52, Processing Time 0.021 seconds

Sanguinarine Induces Apoptosis in Human Hepatocellular Carcinoma HepG2 Cells through the Generation of ROS and Modulation of Akt/ERK Signaling Pathways (HepG2 인체 간암세포의 ROS 생성 및 ERK/Akt 신호전달 경로 조절을 통한 sanguinarine의 apoptosis 유도)

  • Hwang, Ju Yeong;Cho, Yung Hyun
    • Journal of Life Science
    • /
    • v.25 no.9
    • /
    • pp.984-992
    • /
    • 2015
  • Sanguinarine is a benzophenanthridine alkaloid originally isolated from the roots of Sanguinaria canadensis. It has multiple biological activities (e.g., antioxidant and antiproliferative) and immune-enhancing potential. In this study, we explored the proapoptotic properties and modes of action of sanguinarine in human hepatocellular carcinoma HepG2 cells. Our results revealed that sanguinarine inhibited HepG2 cell growth and induced apoptosis in a dose-dependent manner. The induction of apoptosis by sanguinarine was associated with the up-regulation of Fas and Bax, the release of cytochrome c from the mitochondria to the cytosol, and the loss of the mitochondrial membrane potential. In addition, sanguinarine activated caspase-9 and -8, initiator caspases of the intrinsic and death extrinsic pathways, respectively, and caspase-3, accompanied by proteolytic degradation of poly (ADP-ribose) polymerase. Sanguinarine also triggered the generation of reactive oxygen species (ROS). The elimination of ROS by N-acetylcysteine reversed sanguinarine-induced apoptosis. Furthermore, sanguinarine induced the dephosphorylation of Akt and the phosphorylation of mitogen-activated protein kinases, including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38. The growth inhibition was enhanced by the combined treatment of sanguinarine with a phosphatidylinositol 3'-kinase (PI3K) inhibitor and an ERK inhibitor but not JNK and p38 inhibitors. Overall, our data indicate that the proapoptotic effects of sanguinarine in HepG2 cells depend on ROS production and the activation of both intrinsic and extrinsic signaling pathways, which is mediated by blocking PI3K/Akt and activating the ERK pathway. Thus, our data suggest that sanguinarine may be a natural compound with potential for use as an antitumor agent in liver cancer.

Emodin Inhibits Breast Cancer Cell Proliferation through the ERα-MAPK/Akt-Cyclin D1/Bcl-2 Signaling Pathway

  • Sui, Jia-Qi;Xie, Kun-Peng;Zou, Wei;Xie, Ming-Jie
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6247-6251
    • /
    • 2014
  • Background: The aim of the present study was to investigate the involvement of emodin on the growth of human breast cancer MCF-7 and MDA-MB-231 cells and the estrogen (E2) signal pathway in vitro. Materials and Methods: MTT assays were used to detect the effects of emodin on E2 induced proliferation of MCF-7 and MDA-MB-231 cells. Flow cytometry (FCM) was applied to determine the effect of emodin on E2-induced apoptosis of MCF-7 cells. Western blotting allowed detection of the effects of emodin on the expression of estrogen receptor ${\alpha}$, cyclin D1 and B-cell lymphoma-2 (Bcl-2), mitogen-activated protein kinases (MAPK) and phosphatidylinostiol 3-kinases (PI3K). Luciferase assays were emplyed to assess transcriptional activity of $ER{\alpha}$. Results: Emodin could inhibit E2-induced MCF-7 cell proliferation and anti-apoptosis effects, and arrest the cell cycle in G0/G1 phase, further blocking the effect of E2 on expression and transcriptional activity of $ER{\alpha}$. Moreover, Emodin influenced the ER ${\alpha}$ genomic pathway via downregulation of cyclin D1 and Bcl-2 protein expression, and influenced the non-genomic pathway via decreased PI3K/Akt protein expression. Conclusions: These findings indicate that emodin exerts inhibitory effects on MCF-7 cell proliferation via inhibiting both non-genomic and genomic pathways.

A study on the effect of microgroove-fibronectin complex titanium plate on the expression of various cell behavior-related genes in human gingival fibroblasts (인간치은섬유아세포의 다양한 세포행동 관련 유전자발현에 마이크로그루브-파이브로넥틴 복합 티타늄표면이 미치는 영향에 대한 연구)

  • Hwang, Yu Jeong;Lee, Won Joong;Leesungbok, Richard;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.150-161
    • /
    • 2022
  • Purpose: To determine the effects of the microgroove-fibronectin complex surface on the expression of various genes related to cellular activity in human gingival fibroblasts. Materials and Methods: Smooth titanium specimens (NE0), acid-treated titanium specimens (E0), microgroove and acid-treated titanium specimens (E60/10), fibronectin-fixed smooth titanium specimens (NE0FN), acid-treated and fibronectin-immobilized titanium specimens (E0FN), and microgroove and acid-treated titanium specimens immobilized with fibronectin (E60/10FN) were prepared. Real-time polymerase chain reaction experiments were conducted on 44 genes related to cell behavior of human gingival fibroblasts. Results: Adhesion and proliferation of human gingival fibroblast on microgroove-fibronectin complex titanium were activated through four types of signaling pathway. Integrin α5, Integrin β1, Integrin β3, Talin-2, which belong to the focal adhesion pathway, AKT1, AKT2, NF-κB, which belong to the PI3K-AKT signaling pathway, MEK2, ERK1, ERK2, which belong to the MAPK signaling pathway, and Cyclin D1, CDK4, CDK6 genes belonging to the cell cycle signaling pathway were upregulated on the microgroove-fibronectin complex titanium surface (E60/10FN). Conclusion: The microgroove-fibronectin complex titanium surface can up-regulate various genes involved in cell behavior.

Fucosyltransferase IV Enhances Expression of MMP-12 Stimulated by EGF via the ERK1/2, p38 and NF-kB Pathways in A431Cells

  • Yang, Xue-Song;Liu, Shui-Ai;Liu, Ji-Wei;Yan, Qiu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1657-1662
    • /
    • 2012
  • Fucosyltransferase IV (FUT4) has been implicated in cell adhesion, motility, and tumor progression in human epidermoid carcinoma A431 cells. We previously reported that it promotes cell proliferation through the ERK/MAPK and PI3K/Akt signaling pathways; however, the molecular mechanisms underlying FUT4-induced cell invasion remain unknown. In this study we determined the effect of FUT4 on expression of matrix metalloproteinase (MMP)-12 induced by EGF in A431 cells. Treatment with EGF resulted in an alteration of cell morphology and induced an increase in the expression of MMP-12. EGF induced nuclear translocation of nuclear factor kB (NF-${\kappa}B$) and resulted in phosphorylation of $IkB{\alpha}$ in a time-dependent manner. In addition, ERK1/2 and p38 MAPK were shown to play a crucial role in mediating EGF-induced NF-${\kappa}B$ translocation and phosphorylation of $I{\kappa}B{\alpha}$ when treated with the MAPK inhibitors, PD98059 and SB203580, which resulted in increased MMP-12 expression. Importantly, we showed that FUT4 up-regulated EGF-induced MMP-12 expression by promoting the phosphorylation of ERK1/2 and p38 MAPK, thereby inducing phosphorylation/degradation of $I{\kappa}B{\alpha}$, NF-${\kappa}B$ activation. Base on our data, we propose that FUT4 up-regulates expression of MMP-12 via a MAPK-NF-${\kappa}B$-dependent mechanism.

Inhibitory Effects of Esculetin Through the Down-Regulation of PI3K/MAPK Pathway on Collagen-Induced Platelets Aggregation (Esculetin이 PI3K/MAPK 경로 하향 조절을 통해 collagen 유도의 혈소판 응집 억제에 미치는 효과)

  • Park, Chang-Eun;Lee, Dong-Ha
    • Korean Journal of Pharmacognosy
    • /
    • v.52 no.3
    • /
    • pp.127-133
    • /
    • 2021
  • Platelet activation plays a major role in cardiovascular disorders (CVDs). Thus, disrupting platelet activation represents an attractive therapeutic target on CVDs. Esculetin, a bioactive 6,7-dihydroxy derivative of coumarin, possesses pharmacological activities against obesity, diabetes, renal failure, and CVDs. In other report, the effect of esculetin has been examined in human platelet activation and experimental mouse models, and esculetin inhibited collagen- and arachidonic acid-induced platelet aggregation in washed human platelets. However, it had no effects on other agonists such as thrombin and U46619, and its mechanism is not also clearly known. This study investigated the effect of esculetin on collagen-induced human platelet aggregation, and we clarified the mechanism. Esuletin has effects on the down regulation of PI3K/Akt and MAPK, phosphoproteins that act in the signaling process in platelet aggregation. The effects of esculetin reduced of TXA2 production and phospholipase A2 activation, and intracellular granule secretion including ATP and serotonin, leading to inhibit platelet aggregation. These results clearly clarified the effect of esculetin in inhibiting platelet activity and thrombus formation in humans.

Barbigerone Inhibits Tumor Angiogenesis, Growth and Metastasis in Melanoma

  • Yang, Jian-Hong;Hu, Jia;Wan, Li;Chen, Li-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.167-174
    • /
    • 2014
  • Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore investigated the effects of barbigerone on all three in the B16F10 tumor model established in both zebrafish and mouse models, and explored underlying molecular mechanisms. In vitro, barbigerone inhibited B16F10 cell proliferation, survival, migration and invasion and suppressed human umbilical vascular endothelial cell migration, invasion and tube formation in concentration-dependent manners. In the transgenic zebrafish model, treatment with $10{\mu}M$ barbigerone remarkably inhibited angiogenesis and tumor-associated angiogenesis by reducing blood vessel development more than 90%. In vivo, barbigerone significantly suppressed angiogenesis as measured by H and E staining of matrigel plugs and CD31 staining of B16F10 melanoma tumors in C57BL/6 mice. Furthermore, it exhibited highly potent activity at inhibiting tumor growth and metastasis to the lung of B16F10 melanoma cells injected into C57BL/6 mice. Western blotting revealed that barbigerone inhibited phosphorylation of AKT, FAK and MAPK family members, including ERK, JNK, and p38 MAPKs, in B16F10 cells mainly through the MEK3/6/p38 MAPK signaling pathway. These findings suggested for the first time that barbigerone could inhibit tumor-angiogenesis, tumor growth and lung metastasis via downregulation of the MEK3/6/p38 MAPK signaling pathway. The findings support further investigation of barbigerone as a potential anti-cancer drug.

Anti-inflammatory effects of ethanol extract from Orostachys japonicus on modulation of signal pathways in LPS-stimulated RAW 264.7 cells

  • Jeong, Jae-Han;Ryu, Deok-Seon;Suk, Dong-Hee;Lee, Dong-Seok
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.399-404
    • /
    • 2011
  • In this study, powder of Orostachys japonicus A. Berger (O. japonicus) was extracted with 95% ethyl alcohol and fractionated using a series of organic solvents, including n-hexane (hexane), dichloromethane (DCM), ethylacetate (EtOAc), n-butanol (BuOH), and water ($H_2O$). We investigated the anti-inflammatory effects of these O. japonicus extracts on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Their effects on the expression of inflammatory mediators and transcription factors were analyzed by Western blotting. DCM fraction significantly inhibited formation of reactive oxygen species (ROS) as well as nitric oxide (NO) in LPS-stimulated RAW 264.7 cells. Phosphorylation of the pro-inflammatory transcription factor complex nuclear factor-kappa B (NF-${\kappa}$B) p65 and expression of inducible nitric oxide synthase (iNOS), one of its downstream proteins, were also suppressed by DCM fraction. These effects were regulated by upsteam proteins in the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathways. Taken together, our data suggest that O. japonicus could be used as a potential source for anti-inflammatory agents.

Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과)

  • Chung-Mu Park;Hyun An;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

Antitumor effects of valdecoxib on hypopharyngeal squamous carcinoma cells

  • Trang, Nguyen Thi Kieu;Yoo, Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • The antitumoral effects of valdecoxib (Val), an United States Food and Drug Administration-approved anti-inflammatory drug that was withdrawn due to the side effects of increased risk of cardiovascular adverse events, were investigated in hypopharyngeal squamous cell carcinoma cells by performing a cell viability assay, transwell assay, immunofluorescence imaging, and Western blotting. Val markedly inhibited cell viability with an IC50 of 67.3 µM after 48 h of treatment, and also downregulated cell cycle proteins such as Cdks and their regulatory cyclin units. Cell migration and invasion were severely suppressed by inhibiting integrin α4/FAK expression. In addition, Val activated the cell cycle checkpoint CHK2 in response to excessive DNA damage, which led to the activation of caspase-3/9 and induced caspase-dependent apoptosis. Furthermore, the signaling cascades of the PI3K/AKT/mTOR and mitogen-activated protein kinase pathways were significantly inhibited by Val treatment. Taken together, our results indicate that Val can be used for the treatment of hypopharyngeal squamous cell carcinoma.

IL-12 and IL-23 Production in Toxoplasma gondii- or LPS-Treated Jurkat T Cells via PI3K and MAPK Signaling Pathways

  • Ismail, Hassan Ahmed Hassan Ahmed;Kang, Byung-Hun;Kim, Jae-Su;Lee, Jae-Hyung;Choi, In-Wook;Cha, Guang-Ho;Yuk, Jae-Min;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.613-622
    • /
    • 2017
  • IL-12 and IL-23 are closely related in structure, and have been shown to play crucial roles in regulation of immune responses. However, little is known about the regulation of these cytokines in T cells. Here, we investigated the roles of PI3K and MAPK pathways in IL-12 and IL-23 production in human Jurkat T cells in response to Toxoplasma gondii and LPS. IL-12 and IL-23 production was significantly increased in T cells after stimulation with T. gondii or LPS. T. gondii and LPS increased the phosphorylation of AKT, ERK1/2, p38 MAPK, and JNK1/2 in T cells from 10 min post-stimulation, and peaked at 30-60 min. Inhibition of the PI3K pathway reduced IL-12 and IL-23 production in T. gondii-infected cells, but increased in LPS-stimulated cells. IL-12 and IL-23 production was significantly reduced by ERK1/2 and p38 MAPK inhibitors in T. gondii- and LPS-stimulated cells, but not in cells treated with a JNK1/2 inhibitor. Collectively, IL-12 and IL-23 production was positively regulated by PI3K and JNK1/2 in T. gondii-infected Jurkat cells, but negatively regulated in LPS-stimulated cells. And ERK1/2 and p38 MAPK positively regulated IL-12 and IL-23 production in Jurkat T cells. These data indicate that T. gondii and LPS induced IL-12 and IL-23 production in Jurkat T cells through the regulation of the PI3K and MAPK pathways; however, the mechanism underlying the stimulation of IL-12 and IL-23 production by T. gondii in Jurkat T cells is different from that of LPS.