• Title/Summary/Keyword: MAP-kinase

Search Result 284, Processing Time 0.024 seconds

인슐린의 신호전달 기전 : Transcription Factor AP-1 의 역활

  • 김성진
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.17-21
    • /
    • 1995
  • 대부분의 인슐린의 작용들은 인슐린 수용체를 통하여 이루어진다. 인슐린이 수용체에 결합하면, 수용체 고유의 tyrosine kinase 효소활성의 증가를 유발시키며, 결과적으로 세포내에 존재하는 기질 단백질, IRS-1, 의 tyrosine 잔기의 인산화를 증가시키게 된다. 이후, 여러 형태의 serine / threonine protein kinase 의 연속적인 활성화가 일어난다. 이들에 부가해서, 인슐린의 효자는 세포핵 내에까지 전달되어 유전자 발현의 조절과 같은 세포핵 고유의 활동에도 관여한다. 현재, 세포막에서 시작된 인슐린의 신호들이 세포핵까지 전달되는 정확한 기전에 대해서는 알려진 바 없지만, 최근의 연구에 의하면 MAP Kinase 와 S6 Kinase 그리고 Transcription Factor AP-1의 중요성이 제시되고 있다. 특히 유전자 조절 기전에는 핵단백질인 transcription factor의 인산화 반응이 큰 역할을 한다고 보고되고 있는바, 본 연구에서 AP-1. transcription factor 의 인산화 반응이 인슐린의 신호전달계에 미치는 역할에 대하여 고찰하였다. 요약하면, AP-1 transcription factor의 구성원인 c-Jun, c-Fos 그리고 Fos 관련 단백질들의 인산화가 인슐린에 의해 증가되며, 동시에 그들의. DNA-binding activity 와 유전자 발현의 활성이 증가됨을 밝힘으로써, AP-1 transcription factor의 인산화 반응이 인슐린의 핵 내에서의 작용기전에 중요한 역할을 함이 제시되고 있다. 또한 AP-1 의 인산화 반응에 관여하는 세포핵 protein kinase로서 Casein Kinase II 의 중요성이 밝혀졌다.

  • PDF

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2002.11a
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy-${\Delta}^{12, 14}$-prostaglandin $J_2$ (15-deoxy-$PGJ_2$), a naturally occurring ligand activates the peroxisome proliferator-activated $receptor-{\gamma}(PPAR-{\gamma}$). Activation of $PPAR-{\gamma}$ has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-$PGJ_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-$PGJ_2$ (0.2 to 1.6 ${\mu}M$) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/ml). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-$PGJ_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-$PGJ_2$(0.8 ${\mu}M$) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-$PGJ_2$ on the expression of p38 MAP kinase and activation of AP-1, The promoting ability of 15-deoxy-$PGJ_2$ did not occur through $PPAR-{\gamma}$, as synthetic PPAR-${\gamma}$ agonist andantagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), $PPAR-{\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and $PGE_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of f 5-deoxy-$PGJ_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-$PGJ_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 single pathway may be important in the promoting activity of 15-deoxy-$PGJ_2$ cells.

  • PDF

The Role of ROS and p38 MAP kinase in Berberine-Induced Apoptosis on Human Hepatoma HepG2 Cells (Berberine에 의한 HepG2 세포의 사멸과정에서 활성기산소와 p38 MAP kinase의 역할에 관한 연구)

  • Hyun, Mee-Sun;Woo, Won-Hong;Hur, Jung-Mu;Kim, Dong-Ho;Mun, Yeun-Ja
    • Applied Biological Chemistry
    • /
    • v.51 no.2
    • /
    • pp.129-135
    • /
    • 2008
  • Berberine is an isoquinoline alkaloid used in traditional Chinese medicine and has been isolated from a variety of plants, such as Coptis chinensis and Phellodendron amurense. It has a wide spectrum of clinical applications such as in anti-tumor, anti-microbial, and anti-inflammatory activities. However, it is still unknown that berberine related with reactive oxygen species (ROS)-mediated apoptosis pathway in human hepatoma HepG2 cells. In the present study, we are examined the molecular mechanism of ROS- and p38 MAP kinase-mediated apoptosis by berberine in HepG2 cells. Berberine increased cytotoxicity effects by time- and does-dependent manner. $LD_{50}$ was detected 50 ${\mu}M$ at 48h of exposure to berberine. Nuclei cleavage and apoptotic DNA fragmentation were observed in cells treated with 50 ${\mu}M$ of berberine for 48h. Moreover, berberine induced the activating of caspase-3, p53, p38 and Bax expression, whereas the expression of anti-apoptotic signaling pathways, Bcl-2, was decreased. Additionally, berberine-treated cells had an increased level of generation of ROS and nitric oxide (NO). These results indicated that berberine induces apoptosis of HepG2 cells may be mediated oxidative injury acts as an early and upstream change, triggers mitochondrial dysfunction, Bcl-2 and Bax modulation, p38 and p53 activation, caspase-3 activation, and consequent leading to apoptosis.

Expression of peroxisome proliferator activated receptor gamma in the neuronal cells and modulation of their differentiation by PPAR gamma agonists

  • Hong, Jin-Tae
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.11b
    • /
    • pp.14-40
    • /
    • 2002
  • 15-Deoxy- Δ$\^$12,14/-prostaglandin J$_2$ (15-deoxy-PGJ$_2$), a naturally occurring ligand activates the peroxisome proliferator-activated receptor-${\gamma}$ (PPAR-${\gamma}$). Activation of PPAR-y has been found to induce cell differentiation such as adipose cell and macrophage. Here it was investigated whether 15-deoxy-PGJ$_2$ has neuronal cell differentiation and possible underlying molecular mechanisms. Dopaminergic differentiating PC 12 cells treated with 15-deoxy-PGJ$_2$ (0.2 to 1.6 ${\mu}$M) alone showed measurable neurite extension and expression of neurofilament, markers of cell differentiation. However much greater extent of neurite extension and expression of neurofilament was observed in the presence of NGF (50 ng/$m\ell$). In parallel with its increasing effect on the neurite extension and expression of neurofilament, 15-deoxy-PGJ$_2$ enhanced NGF-induced p38 MAP kinase expression and its phosphorylation in addition to the activation of transcription factor AP-1 in a dose dependent manner. Moreover, pretreatment of SD 203580, a specific inhibitor of p38 MAP kinase inhibited the promoting effect of 15-deoxy-PGJ$_2$ (0.8 ${\mu}$M) on NGF-induced neurite extension. This inhibition correlated well with the ability of SB203580 to inhibit the enhancing effect of 15-deoxy-PGJ$_2$ on the expression of p38 MAP kinase and activation of AP-1. The promoting ability of 15-deoxy-PGJ$_2$ did not occur through PPAR-${\gamma}$, as synthetic PPAR-${\gamma}$ agonist and antagonist did not change the neurite promoting effect of 15-deoxy-PGJ$_2$. In addition, contrast to other cells (embryonic midbrain and SK-N-MC cells), PPAR-${\gamma}$ was not expressed in PC-12 cells. Other structure related prostaglandins, PGD$_2$ and PGE$_2$ acting via a cell surface G-protein-coupled receptor (GPCR) did not increase basal or NGF-induced neurite extension. Moreover, GPCR (EP and DP receptor) antagonists did not alter the promoting effect of 15-deoxy-PGJ$_2$ on neurite extension and activation of p38 MAP kinase, suggesting that the promoting effect of 15-deoxy-PGJ$_2$ may not be mediated GPCR. These data demonstrate that activation of p38 MAP kinase in conjunction with AP-1 signal pathway may be important in the promoting activity of 15-deoxy-PGJ$_2$ on the differentiation of PC12 cells.

  • PDF

The Anti-Cancer Effect of Apamin in Bee-Venom on Melanoma cell line SK-MEL-2 and Inhibitory Effect on the MAP-Kinase Signal Pathway (약침용(藥鍼用) 봉독성분(蜂毒成分) 중(中) Apamin의 항암효과(抗癌效果)와 MAP-Kinase 신호전달체계에 관한 연구(硏究))

  • Kim, Youn-Mi;Lee, Jae-Dong;Park, Dong-Seok
    • Journal of Acupuncture Research
    • /
    • v.18 no.4
    • /
    • pp.101-115
    • /
    • 2001
  • Objective : To characterize the antitumorigenic potential of Apamin, one of the major components of bee venom, its effects on cell proliferation and the mitogen-activated protein kinase (MAPK) signal transduction pathway were characterized using the human melanoma cell line SK-MEL-2. Methods & Results : Cell counting analysis for cell death demonstrated that consistent with a previous results, SK-MEL-2 cells treated with $0.5-2.0{\mu}g/ml$ of Apamin showed no recognizable cytotoxic effect whereas detectable induction of cell death was identified at concentrations over $5.0{\mu}g/ml$. [3H]thymidine incorporation assay for cell proliferation demonstrated that DNA replication of SK-MEL-2 cells is inhibited by Apamin in a dose- and time-dependent manner. To explore whether Apamin-induced growth suppression is associated with the MAPK signaling pathway, phosphorylation of Erk, a function mediator of MAPK growth-stimulating signal, was examined Western blot assay using a phospho-specific Erkl/2 antibody. A significant increase of Erkl/2 phosphorylation level was observed in Apamin-treated cells compared with untreated control cells. Qantitative RT-PCR analysis revealed that Apamin inhibit expression of MAPK downstream genes such as c-Jun, c-Fos, and cyclin D1 but not expression of MAPK pathway component genes including Ha-Ras, c-Raf-1, MEK1, and Erk. Conclusion : It is strongly suggested that the antitumorigenic activity of Apamin might result in part from its inhibitory effect on the MAPK signaling pathway in human melanoma cells SK-MEL-2.

  • PDF

Effects of Dendrobii herba and Punica granatum Extract on the Anti-oxidant, Anti-inflammatory, Anti-wrinkle and Whitening (석곡(石斛), 석류(石榴)의 항산화, 항염증, 주름, 미백에 미치는 영향)

  • HwangBo, Min;Roh, Seok-Sun;Seo, Hyeong-Sik
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.3
    • /
    • pp.11-32
    • /
    • 2010
  • Objective : The aim of this study is to determine the effects of Dendrobii herba extract and Punica granatum extract on skin disease and skin beauty. Methods : To investigate in vitro anti-oxidant activity assay, ethanol extracts of medicinal plants tested by DPPH radical, xanthine oxidase activity. In the next experiment, to investigate anti-inflammatory activity assay, examined by relations in NO synthesis, IL-$1{\beta}$, IL-6, TNF-${\alpha}$, NF-${\kappa}B$, COX-2, MAP kinase. To study Skin wrinkle formation effect, we were examined by tyrosinase activities, melanin synthesis in MNT-1 cell. Results : 1. In an anti-oxidant test, Dendrobii and Punica granatum extract showed high radical scavenging activity. 2. In an anti-inflammatory test, Dendrobii herba and Punica granatum extract weakly inhibited the lipopolysaccharide(LPS)-induced nitric oxide(NO) release from RAW 246.7 macrophage cells. Dendrobii herba and Punica granatum extract also inhibited LPS-induced IL-$1{\beta}$ and COX-2 expressions. The inhibitory effect of Dendrobii herba and Punica granatum extract on macrophage activation were via the inhibition of NF-${\kappa}B$, evidenced by transient transfection assay. however, Dendrobii herba and Punica granatum extract did not have any effects about activation of Jun-N-terminal kinase(JNK) and inhibition of p38 MAP kinase in RAW 264.7 cells. 3. In the skin wrinkle formation assay, Dendrobii herba and Punica granatum extract weakly inhibited collagenase and elastase, however it was not statistically significant. 4. In the skin whitening assay, Dendrobii herba and Punica granatum extract weakly inhibited tyrosinase activity, however, it was not statistically significant. They did not have any effect on melanin synthesis, indicating that they could not be applicable for skin whitening. Conclusion : Dendrobii herba extract and Punica granatum extract may play a significant role in skin disease and skin beauty.

Effects of Aloe and Violae herba Extract on the Anti-oxidant, Anti-inflammatory, Anti-wrinkle and Whitening (노회(蘆薈)(알로에), 자화지정(紫花地丁)의 항산화, 항염증, 주름, 미백에 미치는 영향)

  • Kim, Chang-Hun;Jung, Hyeon-A;Roh, Seok-Sun;Hong, Seok-Hoon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.1
    • /
    • pp.23-43
    • /
    • 2010
  • Objective : This study was performed to assess the effects of Aloe and Violae herba extracts on skin disease and skin beauty. Methods : Anti-oxidant effects were measured by the scavenging for DPPH radical, xanthine oxidase activity. Anti-inflammatory effects were examined by relations in NO synthesis, IL-$1{\beta}$, IL-6, TNF-$\alpha$, NF-kB, COX-2, MAP kinase. The skin wrinkle formation effects were measured by collagenase and elastase activities. The whitening effects were examined by tyrosinase activities, melanin synthesis in MNT-1 cell. Results : 1. In an anti-oxidant test, Aloe and Violae herba extracts showed high radical scavenging activity. 2. In an anti-inflammatory test, Aloe and Violae herba extracts strongly inhibited the lipopolysaccharide(LPS)-induced nitric oxide(NO) release from the RAW 246.7 macrophage cells. Aloe and Violae herba extracts also inhibited the LPS-induced IL-$1{\beta}$ and COX-2 expressions. The inhibitory effects of Aloe and Violae herba extracts on macrophage activation were via the inhibition of NF-kB, evidenced by transient transfection assay. Furthermore, Aloe and Violae herba extracts weakly inhibited the activation of Jun-N-terminal kinase(JNK) but they did not have any effects on p38 MAP kinase in RAW 264.7 cells. 3. In the skin wrinkle formation assay, Aloe extract strongly inhibited collagenase and elastase, whose activity are tightly related with the wrinkle formation. 4. In the skin whitening assay, Aloe and Viloae herba extracts weakly inhibited tyrosinase activity, however, it was not statistically significant. Besides they did not have any effects on melanin synthesis, indicating that they could not be applicable for skin whitening. Conclusion : This study show that Aloe and Violae herba extracts may play a significant role in skin disease and skin beauty.

Emodin Isolated from Polygoni cuspidati Radix Inhibits TNF-α and IL-6 Release by Blockading NF-κB and MAP Kinase Pathways in Mast Cells Stimulated with PMA Plus A23187

  • Lu, Yue;Jeong, Yong-Tae;Li, Xian;Kim, Mi Jin;Park, Pil-Hoon;Hwang, Seung-Lark;Son, Jong Keun;Chang, Hyeun Wook
    • Biomolecules & Therapeutics
    • /
    • v.21 no.6
    • /
    • pp.435-441
    • /
    • 2013
  • Emodin, a naturally occurring anthraquinone derivative isolated from Polygoni cuspidati radix, has several beneficial pharmacologic effects, which include anti-cancer, anti-diabetic, and anti-inflammatory activities. In this study, the authors examined the effect of emodin on the production of proinflammatory cytokines, such as, tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6, in mouse bone marrow-derived mast cells (BMMCs) stimulated with phorbol 12-myristate 13-acetate (PMA) plus the calcium ionophore A23187. To investigate the mechanism responsible for the regulation of pro-inflammatory cytokine production by emodin, the authors assessed its effects on the activations of transcriptional factor nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and mitogen-activated protein kinases (MAPKs). Emodin attenuated the nuclear translocation of (NF)-${\kappa}B$ p65 and its DNA-binding activity by reducing the phosphorylation and degradation of $I{\kappa}B{\alpha}$ and the phosphorylation of $I{\kappa}B$ kinase B (IKK). Furthermore, emodin dose-dependently attenuated the phosphorylations of MAPKs, such as, extracellular signal-regulated kinase 1/2 (ERK1/2), p38 MAP kinase, and the stress-activated protein kinases (SAPK)/c-Jun-N-terminal kinase (JNK). Taken together, the findings of this study suggest that the anti-inflammatory effects of emodin on PMA plus A23187-stimulated BMMCs are mediated via the inhibition of NF-${\kappa}B$ activation and of the MAPK pathway.

Pyrrolidine dithiocarbamate-induced activation of ERK and increased expression of c-Fos in mouse embryonic stem cells

  • Kim, Young-Eun;Park, Jeong-A;Nam, Ki-Hoan;Kwon, Hyung-Joo;Lee, Young-Hee
    • BMB Reports
    • /
    • v.42 no.3
    • /
    • pp.148-153
    • /
    • 2009
  • Pyrrolidine dithiocarbamate (PDTC) is a stable anti-oxidant or pro-oxidant, depending on the situation, and it is widely used to inhibit the activation of NF-${\kappa}B$. We recently reported that PDTC activates the MIP-2 gene in a NF-${\kappa}B$-independent and c-Jun-dependent manner in macrophage cells. In this work, we found that PDTC activates signal transduction pathways in mouse ES cells. Among the three different mitogen-activated protein kinase (MAPK) pathways, including the extracellular-signal-regulated kinase (ERK), p38 MAP kinase, and stress-activated protein kinase (SAPK)/Jun N-terminal kinase (JNK) pathways, only the ERK pathway was significantly activated in mouse ES cells after stimulation with PDTC. Additionally, we observed a synergistic activation of ERK and induction of c-Fos after stimulation with PDTC in the presence of mouse embryonic fibroblast (MEF) conditioned medium. In contrast, another NF-${\kappa}B$ inhibitor, BMS-345541, did not activate the MAP kinase pathways or induce expression of c-Fos. These results suggest that changes in the presence of the NF-${\kappa}B$ inhibitor PDTC should be carefully considered when it used with mouse ES cells.

Paclitaxel Suppress Dedifferentiation via Mitogen-activated Protein Kinase Pathway in Rabbit Articular Chondrocyte

  • Im, Jeong-Hee;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.1
    • /
    • pp.67-72
    • /
    • 2009
  • Microtubule-interfering agents (MIAs), including paclitaxel, have been attributed in part to interference with microtubule assembly, impairment of mitosis, and changes in cytoskeleton. But the signaling mechanisms that link microtubule disarray to destructive or protective cellular responses are poorly understood. This study investigated the effect of paclitaxel on differentiation such as type II collagen expression and sulfated proteoglycan accumulation in rabbit articular chondrocytes. Paclitaxel caused differentiated chondrocyte phenotype as demonstrated by increment of type II collagen expression and proteoglycan synthesis Paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase. Inhibition of ERK-1/2 with PD98059 enhanced paclitaxel-induced differentiation, whereas inhibition of p38 kinase with SB203580 suppressed paclitaxel-induced differentiation. Our findings suggest that ERK-1/2 and p38 kinase oppositely regulate paclitaxel-induced differentiation in chondrocytes.

  • PDF