• Title/Summary/Keyword: MAP sensor trouble

Search Result 2, Processing Time 0.014 seconds

An Experimental Study on the Secondary Waveform Analysis according to Measure of Electronic Control Waveform (가솔린엔진의 전자제어 센서파형 측정을 통한 점화2차 파형 분석에 관한 실험적 연구)

  • Yoo, Jong-Sik;Kim, Chul-Soo;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.95-100
    • /
    • 2011
  • The test was done on cars travelling at speeds of 20km/h, 60km/h and 100km/h, the performance testing mode for chassis dynamometer. In this test, the secondary waveform were measured, including those using faulty MAP sensors, oxygen sensors and spark plugs. The results from these measurements and their analysis of secondary waveform can be summarized as follows: 1) The secondary waveform measured from the faulty oxygen sensor showed a lot of noise around peak voltage and in the rising and falling sections during spark line which means that the air fuel mixture was non-homogeneous. 2) The secondary waveform from the faulty MAP sensor showed the worst shape compared to other sensors, including variation of spark line, state of air-fuel mixture and velocity of flame front. 3) The spark line time of secondary waveform using a faulty spark plug displayed the shortest and smallest energy spark line, which means that a misfire occurred.

LiDAR Static Obstacle Map based Position Correction Algorithm for Urban Autonomous Driving (도심 자율주행을 위한 라이다 정지 장애물 지도 기반 위치 보정 알고리즘)

  • Noh, Hanseok;Lee, Hyunsung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents LiDAR static obstacle map based vehicle position correction algorithm for urban autonomous driving. Real Time Kinematic (RTK) GPS is commonly used in highway automated vehicle systems. For urban automated vehicle systems, RTK GPS have some trouble in shaded area. Therefore, this paper represents a method to estimate the position of the host vehicle using AVM camera, front camera, LiDAR and low-cost GPS based on Extended Kalman Filter (EKF). Static obstacle map (STOM) is constructed only with static object based on Bayesian rule. To run the algorithm, HD map and Static obstacle reference map (STORM) must be prepared in advance. STORM is constructed by accumulating and voxelizing the static obstacle map (STOM). The algorithm consists of three main process. The first process is to acquire sensor data from low-cost GPS, AVM camera, front camera, and LiDAR. Second, low-cost GPS data is used to define initial point. Third, AVM camera, front camera, LiDAR point cloud matching to HD map and STORM is conducted using Normal Distribution Transformation (NDT) method. Third, position of the host vehicle position is corrected based on the Extended Kalman Filter (EKF).The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment and showed better performance than only lane-detection algorithm. It is expected to be more robust and accurate than raw lidar point cloud matching algorithm in autonomous driving.