• Title/Summary/Keyword: MAP recovery

Search Result 116, Processing Time 0.023 seconds

The Study of Flood Simulations using LiDAR Data (LiDAR 자료를 이용한 홍수 시뮬레이션에 관한 연구)

  • Shim, Jung-Min;Lee, Suk-Bae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.14 no.4 s.38
    • /
    • pp.53-60
    • /
    • 2006
  • The purpose of this paper is forcasting of flooding area using LiDAR surveying data, and flood map for damage prevention is established for this purpose. Teahwa river at Ulsan city was chosen as test area and the flood simulation was produced in this area. For the flood simulation, each DEM using LiDAR data and digital map was established and then HEC model program and MIKE program was used to decide the amount of flood flowing and flood height. To improve the rainfall-overflow simulation confidence using inspection comparison of LiDAR data this paper analyzed and compared the LiDAR DEM accuracy and 1/5000 digital map DEM. The height accuracy is important factor to make flood map, however, LiDAR survey execution of all river area is not economic so, LiDAR survey execution of only important area is possible to be make high accuracy and economic flood map. The expectation effect of flood simulation is flood damage prevention and economic savings of recovery cost by forcasting of rainfall-overflow area and establishment of counter-measure.

  • PDF

A Stereo Matching Algorithm using New Multiple Windows (새로운 다중 창을 이용한 스테레오 정합 알고리즘)

  • Kim, Choong-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.349-354
    • /
    • 2011
  • In this paper we propose a simple efficient stereo matching algorithm to recover sharp object boundaries and to obtain dense disparity map using new multiple line shape windows. To this end, we consider left-right consistency and unique constraint. From the experimental results it is found that the proposed algorithm is very good for obtaining sharp and dense disparity maps for stereo image pairs.

Distortions of Spherical Data in the Wavenumber Domain

  • Kim, Jeong-Woo;Lee, Dong-Cheon
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • Sampling rates become inconsistent when spatial data in the spherical coordinate are resampled with respect to latitudinal or longitudinal degree for mathematical processes such as Fourier Transform, and this results in distortions of the processed data in the wavenumber domain. These distortions are more evident in the polar regions. An example is presented to show such distortions during the recovery process of free-air gravity anomalies from ERS-1 satellite radar altimeter data from the Barents Sea in the Russian Arctic, and a method is presented to minimize the distortion using the Lambert Conformal Conic map projection. This approach was found to enhance the free-air gravity anomalies in both data and wavenumber domains.

Refinement of Low Resolution DEM Using Differential Interferometry

  • Kim Chang-Oh;Lee Dong-Cheon;Kim Jeong-Woo;Kim Sang-Wan;Won Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.522-525
    • /
    • 2004
  • Interferometry SAR (InSAR) is a technique to generate topographic map from complex data pairs observed by antennas at different locations. However, to obtain topographic information using InSAR is difficult task because it requires series of complicated process including phase unwrapping and precise recovery of the SAR geometry. Especially, accuracy of the DEM (Digital Elevation Model) produced by repeat pass single SAR pair could be influenced by atmospheric effect. Recently, a new InSAR technique to improve accuracy of DEM has been introduced that utilizes low resolution DEM with a number of SAR image pairs. The coarse DEM plays an important role in reducing phase unwrapping error caused by layover and satellite orbit error. In this study, we implemented DInSAR (Differential InSAR) method which combines low resolution DEMs and ERS tandem pair images. GTOPO30 DEM with 1km resolution, SRTM-3 DEM with 100m resolution, and DEM with 10m resolution derived from 1:25,000 digital vector map were used to investigate feasibility of DInSAR. The accuracy of the DEMs generated both by InSAR and DInSAR was evaluated.

  • PDF

Development of a Camera Self-calibration Method for 10-parameter Mapping Function

  • Park, Sung-Min;Lee, Chang-je;Kong, Dae-Kyeong;Hwang, Kwang-il;Doh, Deog-Hee;Cho, Gyeong-Rae
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.183-190
    • /
    • 2021
  • Tomographic particle image velocimetry (PIV) is a widely used method that measures a three-dimensional (3D) flow field by reconstructing camera images into voxel images. In 3D measurements, the setting and calibration of the camera's mapping function significantly impact the obtained results. In this study, a camera self-calibration technique is applied to tomographic PIV to reduce the occurrence of errors arising from such functions. The measured 3D particles are superimposed on the image to create a disparity map. Camera self-calibration is performed by reflecting the error of the disparity map to the center value of the particles. Vortex ring synthetic images are generated and the developed algorithm is applied. The optimal result is obtained by applying self-calibration once when the center error is less than 1 pixel and by applying self-calibration 2-3 times when it was more than 1 pixel; the maximum recovery ratio is 96%. Further self-correlation did not improve the results. The algorithm is evaluated by performing an actual rotational flow experiment, and the optimal result was obtained when self-calibration was applied once, as shown in the virtual image result. Therefore, the developed algorithm is expected to be utilized for the performance improvement of 3D flow measurements.

Analysis of a small steam injected gas turbine system with heat recovery (열회수를 고려한 소형 증기분사 가스터빈 시스템 해석)

  • Kim, Dong-Seop;Jo, Mun-Gi;Go, Sang-Geun;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.8
    • /
    • pp.996-1008
    • /
    • 1997
  • This paper describes a methodology and results for the analysis of a small steam injected gas turbine cogeneration system. A performance analysis program for the gas turbine engine is utilized with modifications required for the model of steam injection and the heat recovery steam generator (HRSG). The object of simulation is a simple cycle gas turbine engine under development which adopts a centrifugal compressor. The analysis is based on the off-design operation of the gas turbine and the compressor performance map is utilized. Analyses are carried out with the injection ratio as the main parameter. The effect of steam injection on the power and efficiency of gas turbine and cogeneration capacity is investigated. Also presented is the variation in the main operating parameters inside the HRSG. Remarkable reduction in NOx generation by steam injection is confirmed. In addition, it is observed that for the 100% power operation the temperature of the cooled first nozzle blade decreases by 100.deg. C at full steam injection, which seems to have a favorable effect on the engine life time.

3D Shape Recovery Using Image Focus through Nonlinear Total Variation (비선형 전변동을 이용한 초점거리 변화 기반의 3 차원 깊이 측정 방법)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.27-32
    • /
    • 2013
  • Shape From Focus (SFF) is a passive optical technique to recover 3D structure of an object that utilizes focus information from 2D images of the object taken at different focus levels. Mostly, SFF methods use a single focus measure to compute image focus quality of each pixel in the image sequence. However, it is difficult to recover accurate 3D shape using a single focus measure, as different focus measures perform differently in diverse conditions. In this paper, a nonlinear Total Variation (TV) based approach is proposed for 3D shape recovery. To improve the result of surface reconstruction, several initial depth maps are obtained using different focus measures and the resultant 3D shape is obtained by diffusing them through TV. The proposed method is tested and evaluated by using image sequences of synthetic and real objects. The results and comparative analysis demonstrate the effectiveness of our method.

3D Shape Recovery based on Stereo Matching (스테레오 정합을 이용한 3차원 형상정보 복원)

  • 구본기
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.151-154
    • /
    • 1998
  • 본 논문에서는 스테레오 정합기법을 이용하여 2차원 물체의 형상정보로부터 3차원 형상정보를 자동 추출하는 시스템을 제안한다. 본 논문에서는 정확한 3차원 형상추출을 위해서 밝기값기반 방법과 특징기반 방법의 장점을 살려 두 방법을 통합 사용하였다. 또한, 오정합을 최소화하고 처리속도를 향상시키기 위해서Coarst-to-fine 방법을 적용하였다. 제안한 방법에 의해 도출된 변이영상(Disparity map)은 3차원 그래픽을 이용하여 모델링에 적용함으로써 3차원 형상정보 추출의 타당성 및 가상공간에서의 적용 가능성을 보였다.

  • PDF

Analysis of Dynamics Characteristics of Water Injection Pump through the 2D Finite Element (2D 유한요소 해석을 통한 물 분사 펌프의 동특성 분석)

  • Lee, Jong-Myeong;Kim, Yong-Hwi;Kim, Jun-Ho;Choi, Hyeon-Cheol;Choi, Byeong Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.6
    • /
    • pp.462-469
    • /
    • 2014
  • After drilling operations at the offshore plant, crude oil is producted under high pressure. After that time, oil recovery is reduced, because the pressure of the pipe inside is low during the secondary produce. At that time injection sea water at the pipe inside through water injection pump that the device increase to recovery. A variety of mathematical analysis during the detailed design analysis was not made through the dynamics characteristic at the domestic company. 2D model has reliability of analysis results for the uncomplicated model. Also element and the node the number of significantly less than in the 3D model. So, the temporal part is very effective. In addition, depending on the quality of mesh 3D is a real model and FEM model occurs error. So, user needs a lot of skill. In this paper, a 2D finite element analysis was performed through the dynamics analysis and the study model was validated.

The Effect of Scalp Acupuncture and rTMS on Neuromotor Function in Photothrombotic Stroke Rat Model

  • Jong-Seong Park;Eun-Jong Kim;Min-Keun Song;Jung-Kook Kim;Ganbold Selenge;Sam-Gyu Lee
    • Biomedical Science Letters
    • /
    • v.29 no.4
    • /
    • pp.263-273
    • /
    • 2023
  • This study aimed to investigate effect of scalp acupuncture (SA) and repetitive transcranial magnetic stimulation (rTMS) intervention on neuromotor function in photothrombotic cerebral infarction (PCI) rat model. Sixty male SD rats were used. PCI was induced on M1 cortex of right frontal lobe. SA was performed at the Qianding (GV21), Xuanli (GB6) acupoints of ipsilesional M1. Low-frequency rTMS was delivered to contralesional M1. All rats were randomly divided into 4 groups: group A, normal (n, 15); group B, PCI without any stimulation intervention (n, 15); group C, PCI with SA (n, 15); group D, PCI with rTMS (n, 15). Rota-rod test and Ladder rung walking test (LWT) were done weekly for 8 weeks after PCI. SA or rTMS was started from post-PCI 4th day as protocol for 8 weeks. H/E stain and IHC were done. Western blot and qRT-PCR study were performed for MAP2 and BDNF from ipsilesional M1 peri-infarction tissue. Brain MRI study was conducted to quantify the volume of cerebral infarction. As a result, left forelimb and hindlimb function significantly improved more in group C and D than control group, with expressed more BDNF and MAP2. And brain MRI showed focal infarction of right M1 after PCI, and infarction volume progressively decreased in group C and D than group B from post-PCI 5th to 8th week. SA or rTMS was more effective than no intervention group on neuromotor function of PCI rat model. The functional recovery was associated with stimulation intervention-related neurogenesis.