• Title/Summary/Keyword: MANET Security

Search Result 94, Processing Time 0.021 seconds

Enhanced ANTSEC Framework with Cluster based Cooperative Caching in Mobile Ad Hoc Networks

  • Umamaheswari, Subbian;Radhamani, Govindaraju
    • Journal of Communications and Networks
    • /
    • v.17 no.1
    • /
    • pp.40-46
    • /
    • 2015
  • In a mobile ad hoc network (MANET), communication between mobile nodes occurs without centralized control. In this environment the mobility of a node is unpredictable; this is considered as a characteristic of wireless networks. Because of faulty or malicious nodes, the network is vulnerable to routing misbehavior. The resource constrained characteristics of MANETs leads to increased query delay at the time of data access. In this paper, AntHocNet+ Security (ANTSEC) framework is proposed that includes an enhanced cooperative caching scheme embedded with artificial immune system. This framework improves security by injecting immunity into the data packets, improves the packet delivery ratio and reduces end-to-end delay using cross layer design. The issues of node failure and node malfunction are addressed in the cache management.

Zone-Based Self-Organized Clustering with Byzantine Agreement in MANET

  • Sung, Soon-Hwa
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.221-227
    • /
    • 2008
  • The proposed zone-based self-organized clustering broadcasts neighbor information to only a zone with the same ID. Besides, the zone-based self-organized clustering with unique IDs can communicate securely even if the state transition of nodes in zone-based self-organized clustering is threatened by corrupted nodes. For this security, the Byzantine agreement protocol with proactive asynchronous verifiable secret sharing (AVSS) is considered. As a result of simulation, an efficiency and a security of the proposed clustering are better than those of a traditional clustering. Therefore, this paper describes a new and extended self-organized clustering that securely seeks to minimize the interference in mobile ad hoc networks (MANETs).

FANET:-Communication Architecture and Routing Protocols A Review

  • Moazzam Ali;Adil Idress;Jawwad Ibrahim
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.181-190
    • /
    • 2024
  • FANET (Flying ad-hoc network) is a self-adjusting wireless network that enables easy to deploy flying nodes, inexpensive, flexible such as UAV in the absence of fixed network infrastructure they communicate amoung themselves. Past few decades FANET is only the emerging networks with it's huge range of next-generation applications.FANET is a sub-set of MANET's(Mobile Ad-hoc Network) and UAV networks are known as FANET.Routing enables the flying nodes to establish routes to radio access infrastructure specifically FANET and among themselves coordinate and collaborate.This paper presents a review on existing proposed communication architecture and routing protocols for FANETS.In addition open issues and challenges are summarized in tabular form with proposed solution.Our goal is to provide a general idea to the researchers about different topics to be addressed in future.

A Study on Region-based Secure Multicast in Mobile Ad-hoc Network (Mobile Ad-hoc Network에서 영역기반 보안 멀티캐스트 기법 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.3
    • /
    • pp.75-85
    • /
    • 2016
  • MANET is a network composed only mobile network having limited resources and has dynamic topology characteristics. Therefore, every mobile node acts as a route and delivers data by using multi-hop method. In particular, group communication such as multicast is desperately needed because of characteristics such as battery life of limited wireless bandwidth and mobile nodes. However, the multicast technique can have different efficient of data transmission according to configuring method of a virtual topology by the movement of the nodes and the performance of a multicast can be significantly degraded. In this paper, the region based security multicast technique is proposed in order to increase the efficiency of data transmission by maintaining an optimal path and enhance the security features in data transmission. The group management node that manages the state information of the member nodes after the whole network is separated to area for efficient management of multicast member nodes is used. Member node encrypts using member key for secure data transmission and the security features are strengthened by sending the data after encrypted using group key in group management node. The superiority of the proposed technique in this paper was confirmed through experiments.

A Study on Secure Routing Protocol using Multi-level Architecture in Mobile Ad Hoc Network (Multi-level 구조를 이용한 보안 라우팅 프로토콜에 관한 연구)

  • Yang, Hwan Seok
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.17-22
    • /
    • 2014
  • Wireless Ad hoc Network is threatened from many types of attacks because of its open structure, dynamic topology and the absence of infrastructure. Attacks by malicious nodes inside the network destroy communication path and discard packet. The damage is quite large and detecting attacks are difficult. In this paper, we proposed attack detection technique using secure authentication infrastructure for efficient detection and prevention of internal attack nodes. Cluster structure is used in the proposed method so that each nodes act as a certificate authority and the public key is issued in cluster head through trust evaluation of nodes. Symmetric Key is shared for integrity of data between the nodes and the structure which adds authentication message to the RREQ packet is used. ns-2 simulator is used to evaluate performance of proposed method and excellent performance can be performed through the experiment.

Design and Analysis of Lightweight Trust Mechanism for Accessing Data in MANETs

  • Kumar, Adarsh;Gopal, Krishna;Aggarwal, Alok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1119-1143
    • /
    • 2014
  • Lightweight trust mechanism with lightweight cryptographic primitives has emerged as an important mechanism in resource constraint wireless sensor based mobile devices. In this work, outlier detection in lightweight Mobile Ad-hoc NETworks (MANETs) is extended to create the space of reliable trust cycle with anomaly detection mechanism and minimum energy losses [1]. Further, system is tested against outliers through detection ratios and anomaly scores before incorporating virtual programmable nodes to increase the efficiency. Security in proposed system is verified through ProVerif automated toolkit and mathematical analysis shows that it is strong against bad mouthing and on-off attacks. Performance of proposed technique is analyzed over different MANET routing protocols with variations in number of nodes and it is observed that system provide good amount of throughput with maximum of 20% increase in delay on increase of maximum of 100 nodes. System is reflecting good amount of scalability, optimization of resources and security. Lightweight modeling and policy analysis with lightweight cryptographic primitives shows that the intruders can be detection in few milliseconds without any conflicts in access rights.

Energy Efficient and Secure Multipoint Relay Selection in Mobile Ad hoc Networks

  • Anand, Anjali;Rani, Rinkle;Aggarwal, Himanshu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1571-1589
    • /
    • 2016
  • Nodes in MANETs are battery powered which makes energy an invaluable resource. In OLSR, MPRs are special nodes that are selected by other nodes to relay their data/control traffic which may lead to high energy consumption of MPR nodes. Therefore, employing energy efficient MPR selection mechanism is imperative to ensure prolonged network lifetime. However, misbehaving MPR nodes tend to preserve their energy by dropping packets of other nodes instead of forwarding them. This leads to huge energy loss and performance degradation of existing energy efficient MPR selection schemes. This paper proposes an energy efficient secure MPR selection (ES-MPR) technique that takes into account both energy and security metrics for MPR selection. It introduces the concept of 'Composite Eligibility Index' (CEI) to examine the eligibility of a node for being selected as an MPR. CEI is used in conjunction with willingness to provide distinct selection parameters for Flooding and Routing MPRs. Simulation studies reveal the efficiency of ES-MPR in selection of energy efficient secure and stable MPRs, in turn, prolonging the network operational lifetime.

Exploring Pseudonymous based Schemes for Safegaurding Location Privacy in Vehicular Adhoc Network (VANET)

  • Arslan Akhtar Joyo;Fizza Abbas Alvi;Rafia Naz Memon;Irfana Memon;Sajida Parveen
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.2
    • /
    • pp.101-110
    • /
    • 2023
  • Vehicular Ad Hoc Network (VANET) is considered to be a subclass of Mobile Ad Hoc Networks (MANET). It has some challenges and issues of privacy which require to be solved before practical implementation of the system i.e., location preservation privacy. Many schemes have been proposed. The most prominent is pseudonym change based location preservation scheme. Safety message can be compromised when it sends via a wireless medium, consequently, an adversary can eavesdrop the communication to analyze and track targeted vehicle. The issue can be counter by use of pseudo identity instead of real and their change while communication proves to be a sufficient solution for such problems. In this context, a large amount of literature on pseudonym change strategies has been proposed to solve such problems in VANET. In this paper, we have given details on strategies proposed last two decades on pseudonym change based location preservation along with issues that they focus to resolve and try to give full understanding to readers.

Intelligent Intrusion Detection and Prevention System using Smart Multi-instance Multi-label Learning Protocol for Tactical Mobile Adhoc Networks

  • Roopa, M.;Raja, S. Selvakumar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2895-2921
    • /
    • 2018
  • Security has become one of the major concerns in mobile adhoc networks (MANETs). Data and voice communication amongst roaming battlefield entities (such as platoon of soldiers, inter-battlefield tanks and military aircrafts) served by MANETs throw several challenges. It requires complex securing strategy to address threats such as unauthorized network access, man in the middle attacks, denial of service etc., to provide highly reliable communication amongst the nodes. Intrusion Detection and Prevention System (IDPS) undoubtedly is a crucial ingredient to address these threats. IDPS in MANET is managed by Command Control Communication and Intelligence (C3I) system. It consists of networked computers in the tactical battle area that facilitates comprehensive situation awareness by the commanders for timely and optimum decision-making. Key issue in such IDPS mechanism is lack of Smart Learning Engine. We propose a novel behavioral based "Smart Multi-Instance Multi-Label Intrusion Detection and Prevention System (MIML-IDPS)" that follows a distributed and centralized architecture to support a Robust C3I System. This protocol is deployed in a virtually clustered non-uniform network topology with dynamic election of several virtual head nodes acting as a client Intrusion Detection agent connected to a centralized server IDPS located at Command and Control Center. Distributed virtual client nodes serve as the intelligent decision processing unit and centralized IDPS server act as a Smart MIML decision making unit. Simulation and experimental analysis shows the proposed protocol exhibits computational intelligence with counter attacks, efficient memory utilization, classification accuracy and decision convergence in securing C3I System in a Tactical Battlefield environment.

Detecting Jamming Attacks in MANET (MANET에서의 전파방해 공격 탐지)

  • Shrestha, Rakesh;Lee, Sang-Duk;Choi, Dong-You;Han, Seung-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.482-488
    • /
    • 2009
  • Mobile Ad-hoc Networks provide communication without a centralized infrastructure, which makes them suitable for communication in disaster areas or when quick deployment is needed. On the other hand, they are susceptible to malicious exploitation and have to face different challenges at different layers due to its open Ad-hoc network structure which lacks previous security measures. Denial of service (DoS) attack is one that interferes with the radio transmission channel causing a jamming attack. In this kind of attack, an attacker emits a signal that interrupts the energy of the packets causing many errors in the packet currently being transmitted. In harsh environments where there is constant traffic, a jamming attack causes serious problems; therefore measures to prevent these types of attacks are required. The objective of this paper is to carry out the simulation of the jamming attack on the nodes and determine the DoS attacks in OPNET so as to obtain better results. We have used effective anomaly detection system to detect the malicious behaviour of the jammer node and analyzed the results that deny channel access by jamming in the mobile Ad-hoc networks.