• Title/Summary/Keyword: MALDI-TOF Mass Spectrometry

Search Result 214, Processing Time 0.036 seconds

Molecular analysis of peptide toxins secreted by various Pseudomonas tolaasii strains (다양한 Pseudomonas tolaasii 균주에 의해 분비되는 펩티드 독소의 분석)

  • Yun, Yeong-Bae;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.387-392
    • /
    • 2020
  • Pseudomonas tolaasii is a pathogen causing brown blotch disease in cultivated mushrooms. In previous study, various strains of P. tolaasii were isolated from the mushrooms with disease symptoms and they were further divided into Ptα, Ptβ, and Ptγ subtypes according to the 16S rRNA gene analysis. To investigate the secretion of peptide toxins, tolaasin and its analog peptides, culture extracts of Pt group strains were analyzed by gel permeation chromatography. Those of Ptα subtype strains contained two chromatographic peaks, band A and B. Meanwhile, those of Ptβ and Ptγ subtype strains contained mainly band A component and a little of band B. Molecular weights of toxic peptides of culture extracts were measured by MALDI-TOF mass spectrometry. In Ptα subtype strains, the peptide compositions of band A and B were same including tolaasin I (1,987 Da), tolaasin II (1,943 Da), and its two analog peptides, 1,973 Da and 2,005 Da. The strains of Ptβ and Ptγ subtype secreted many components of MW 1,100-1,200 Da, but they did not synthesize any tolaasin-like peptides. These results suggest that the only Ptα subtype strains secrete tolaasin and its analog peptide toxins and the strains of Ptβ and Ptγ subtypes have different pathogenic characters causing brown blotch disease.

Studies on Investigation and Change of Protein Factors in Porcine Follicular Fluids (돼지의 난포액 내 단백질인자의 탐색과 변화에 관한 연구)

  • Ji, Mi-Ran;Cheong, Hee-Tae;Yang, Boo-Keun;Lee, Chae-Sik;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.34 no.3
    • /
    • pp.217-221
    • /
    • 2010
  • When fully grown oocytes are removed from their follicles, they can resume meiosis and mature spontaneously under in vitro conditions. However, nuclear maturation under in vitro condition is not accompanied by complete cytoplasmic maturation, which is essential for successful fertilization and the initiation of zygotic development. This study analyzed change of proteins in follicular fluids during the porcine follicular development. Follicular fluids were collected from follicles of diameter 1~2 mm, 2~6 mm and 6~10 mm in ovary of slaughtered pigs. Total proteins were extracted from follicular fluids by M-PER Mammalian Protein Extraction Reagent. We confirmed totally 27 same spots, 1 spot from follicle fluid of 2~6 mm follicle and 5 spots from follicle fluid of 6~10 mm in diameter were analyzed by MALDI mass spectrometry and searched on NCBInr. In results, spot No. 28 from 2~6 mm follicle was Ig lambda chain C region, and spot No.32 and 33 from 6~10 mm was Apolipoprotein A-(APOA4). Spot No.29 and 31 were failed to analyze. These results indicate that the porcine oocyte during in vitro maturation depend on specific different expressed proteins may play an important roles in the sequence of molecular events in porcine oocyte maturation and follicular development.

Analysis of Differential-expressed Proteins of Acidithiobacillus ferrooxidans Grown under Phosphate Starvation

  • He, Zhiguo;Zhong, Hui;Hu, Yuehua;Xiao, Shengmu;Liu, Jiarshe;Xu, Jin;Li, Guiyuen
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.545-549
    • /
    • 2005
  • Acidithiobacillus ferrooxidans is one of the most important bacterium used in bioleaching, and can utilize $Fe^{2+}$ or sulphide as energy source. Growth curves for Acidithiobacillus ferrooxidans under phosphate starvation and normal condition have been tested, showing lag, logarithmic, stationary and aging phases as seen in other bacteria. The logarithmic phases were from 10 to 32 hours for Acidithiobacillus ferrooxidans cultivated with normal cultivating condition and from 20 to 60 hrs for Acidithiobacillus ferrooxidans cultivated phosphate starvation. Differences of protein patterns of Acidithiobacillus ferrooxidans growing in case of normal or phosphate starvation were separately investigated after cultivation at $30^{\circ}C$ by the analysis of two-dimensional gel electrophoresis (2-DE), matrix-assisted laser desorption/ionization (MALDI)-Mass spectrometry. There were total 6 protein spots identified, which were Recombination protein recA, RNA helicase, AP2 domain-containing transcription factor, NADH dehydrogenase I chain D, Hyothetical protein PF1669, and Transaldolase STY3758. From the 6 identified protein spots, 3 proteins were found to be decreased in expression at the cultivating condition of phosphate starvation, while another three upregulated.

Prevalence and Microbial Flora of Chicken Slaughtering and Processing Procedure

  • Seol, Kuk-Hwan;Han, Gi-Sung;Kim, Hyoun Wook;Chang, Oun-Ki;Oh, Mi-Hwa;Park, Beom-Young;Ham, Jun-Sang
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.763-768
    • /
    • 2012
  • This study has been performed to measure the prevalence and microbial flora on chicken slaughtering as well as the processing process from the months of October to November. Whole-chicken rinsing technique was used in order to analyze the incidence of microorganisms on chicken carcass at the stage before chilling (after evisceration), after chilling and after cutting. The swab technique was used on processing the processed samples, such as working plates and cutting knives. Brine and cooling water from four cooling tubs were taken from each processing processes and were used as samples. Furthermore, the matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) for whole cell fingerprinting in combination with a dedicated bioinformatic software tool was used to identify the isolated microorganisms. Of the tested samples and processes, brine ($4.50{\pm}0.64$ Log CFU/mL) and chicken carcass before chilling ($4.15{\pm}0.46$ Log CFU/mL) showed the highest population of microorganisms; the predominant microbial flora of them were Moellerella wisconsensis (54.84%), a member of the Enterobacteriaceae family, and Escherichia coli (60.36%), respectively. However, the predominant microbial flora of cut carcass was changed to Staphylococcus aureus (27.32%), which is a kind of pathogenic microorganism that can cause a food-borne illness. Therefore, the slaughtering and processing procedure of chicken are needed to be controlled more hygienically.

Gene Cloning and Characterization of an ${\alpha}$-Amylase from Alteromonas macleodii B7 for Enteromorpha Polysaccharide Degradation

  • Han, Xuefeng;Lin, Bokun;Ru, Ganji;Zhang, Zhibiao;Liu, Yan;Hu, Zhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.2
    • /
    • pp.254-263
    • /
    • 2014
  • Enteromorpha polysaccharides (EP) extracted from green algae have displayed a wide variety of biological activities. However, their high molecular weight leads to a high viscosity and low solubility, and therefore, greatly restrains their application. To solve this problem, bacteria from the surface of Enteromorpha were screened, and an Alteromonas macleodii strain B7 was found to be able to decrease the molecular weight of EP in culture media. Proteins harvested from the supernatant of the A. macleodii B7 culture were subjected to native gel electrophoresis, and a band corresponding to the Enteromorpha polysaccharide lyase (EPL) was detected by activity staining. The enzyme identity was subsequently confirmed by MALDI-TOF/TOF mass spectrometry as the putative ${\alpha}$-amylase reported in A. macleodii ATCC 27126. The amylase gene (amySTU) from A. macleodii B7 was cloned into Escherichia coli, resulting in high-level expression of the recombinant enzyme with EP-degrading activity. AmySTU was found to be cold-adapted; however, its optimal enzyme activity was detected at $40^{\circ}C$. The ${\alpha}$-amylase was highly stable over a broad pH range (5.5-10) with the optimal pH at 7.5-8.0. The highest enzyme activity was detected when NaCl concentration was 2%, which dropped by 50% when the NaCl concentration was increased to 16%, showing an excellent nature of halotolerance. Furthermore, the amylase activity was not significantly affected by tested surfactants or the presence of some organic solvents. Therefore, the A. macleodii strain B7 and its ${\alpha}$-amylase can be useful in lowering EP molecular weight and in starch processing.

A Systematic Proteome Study of Seed Storage Proteins from Two Soybean Genotypes

  • Cho, Seong-Woo;Kwon, Soo-Jeong;Roy, Swapan Kumar;Kim, Hong-Sig;Lee, Chul-Won;Woo, Sun Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.359-363
    • /
    • 2014
  • Soybean seed is a good source of plant protein in human consumables such as baby formula and protein concentrate. The seeds contain an abundance of storage proteins, namely ${\beta}$-conglycin and glycinin that account for ~ 70-80% of the total seed protein content. Proteome profiling has been proved to be an efficient way that can help us to investigate the seed storage proteins. In the present study, the seeds were removed from the pods and the cotylendonary tissues were separated from the testa for proteome analysis in order to investigate the seed storage proteins. A systematic proteome profiling was conducted through one-dimensional gel electrophoresis followed by MALDI-TOF-TOF mass spectrometry in the seeds (cotyledonary tissue) of soybean genotypes. Two dimensional gels stained with CBB, a total of 10 proteins were identified and analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. A total of ten proteins such as glycinin Gy4 precursor, glycinin G3 precursor, glycinin G1 precursor, glycinin chain A2B1a precursor, glycinin chain A2B1a precursor were identified in our investigation. However, the glycinin subunit may be considered to play important roles in soybean breeding and biochemical characterization. In addition, the improved technique will be useful to dissect the genetic control of glycinin expression in soybean.

Isolation, Purification and Characterization of Antioxidative Bioactive Elastin Peptides from Poultry Skin

  • Nadalian, Mehdi;Kamaruzaman, Nurkhuzaiah;Yusop, Mohd Shakir Mohamad;Babji, Abdul Salam;Yusop, Salma Mohamad
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.966-979
    • /
    • 2019
  • Muscle-based by-products are often undervalued although commonly reported having a high amount of natural bioactive peptides. In this study, elastin was isolated from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The sequential identification of the peptide was done by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic amino acids (Val and Pro) in the peptide sequences could potentially contribute to the high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative potential from poultry skin specifically from elastin is evident and can be explored to be used in many applications such as health and pharmaceutical purposes.

Study on the Analytical Method and Monitoring of the Oxidized Polyethylene Wax in Foods (식품 중 oxidized polyethylene wax 분석법 연구 및 함유량 실태 조사)

  • Choi, Seung-Hyun;Kim, Jae-Min;Choi, Sun-il;Jung, Tae-Dong;Cho, Bong-Yeon;Lee, Jin-Ha;Lee, Gunyoung;Lim, Ho Soo;Yun, Sang Soon;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.4
    • /
    • pp.284-289
    • /
    • 2017
  • Oxidized polyethylene wax (OPEW) is, one of the food additives, used as a coating agent in citrus fruits and nuts. OPEW is authorized to quantum satis in EU, USA, and is acceptable less than 250 mg/kg in Australia and New Zealand. But OPEW is unauthorized as a food additive in Korea. This study was to establish the analytical method of OPEW and demonstrate the effective application of various food samples. We first conducted to compare the various analytical method including acid value (AV), high temperature gel permeation chromatography (HT-GPC), matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS), gas chromatography flame ionization detector (GC-FID) and fourier transform infrared spectroscopy (FT-IR). This result indicated that FT-IR spectrum of OPEW treated food sample displayed absorption bands for carbonyl group (C=O, $1714cm^{-1}$), ester group (C-O, $1463cm^{-1}$), aliphatic group (C-H, $2916cm^{-1}$). Furthermore, IR spectrum of OPEW treated food sample showed similar tendency with IR spectrum of OPEW standard. Therefore, it is confirmed that analytical method using FT-IR can be detected on analysis of OPEW in food. As a result of monitoring of 111 samples using established analytical method, OPEW was not detected in the food samples.

InhA-Like Protease Secreted by Bacillus sp. S17110 Inhabited in Turban Shell

  • Jung, Sang-Chul;Paik, Hyoung-Rok;Kim, Mi-Sun;Baik, Keun-Sik;Lee, Woo-Yiel;Seong, Chi-Nam;Choi, Sang-Ki
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.402-408
    • /
    • 2007
  • A strain producing a potent protease was isolated from turban shell. The strain was identified as Bacillus sp. S17110 based on phylogenetic analysis. The enzyme was purified from culture supernatant of Bacillus sp. S17110 to homogeneity by ammonium sulfate precipitation, SP-Sepharose, and DEAE-Sepharose anion exchange chromatography. Protease activity of the purified protein against casein was found to be stable at pH 7 to pH 10 and around $50^{\circ}C$. Approximately 70% of proteolytic activity of the enzyme was detected either in the presence of 100 mM SDS or Tween 20. The enzyme activity was enhanced in the presence of $Ca^{2+},\;Zn^{2+},\;Mg^{2+}$, but was inhibited by EDTA, indicating that it requires metal for its activity. The purified enzyme was found to be a monomeric protein with a molecular mass of 75 kDa, as estimated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration chromatography. The purified enzyme was analyzed through peptide fingerprint mass spectra generated from matrix-assisted laser desorption ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) and a BLAST search, and identified as immune inhibitor A (inhA) deduced from nucleotide sequence of B. cereus G9241. Since InhA was identified as protease that cleave antibacterial proteins found in insect, inhA-like protease purified from Bacillus sp. S17110 might be pathogenic to sea invertebrates.

Solid Phase Synthesis of Lysine-exposed Peptide-Polymer Hybrids by Atom Transfer Radical Polymerization (ATRP를 이용한 Lysine 말단기를 가진 펩타이드-고분자 하이브리드 합성)

  • Ha, Eun-Ju;Kim, Mijin;Kim, Jinku;An, Seong Soo A.;Paik, Hyun-Jong
    • Polymer(Korea)
    • /
    • v.38 no.4
    • /
    • pp.550-556
    • /
    • 2014
  • Recently, the peptide(or protein)-polymer hybrid materials (PPs) were sought in many research areas as potential building blocks for assembling nanostructures in selective solvents. In PPs, the facile routes of preparing well-defined peptide-polymer bio-conjugates and their specific activities in various applications are important issues. Our strategy to prepare the peptide-polymer hybrid materials was to combine atom transfer radical polymerization (ATRP) method with solid phase peptide synthesis. The standard solid phase peptide synthesis method was employed to prepare the PYGK (proline-tyrosine-glycine-lysine) peptide. PYGK is an analogue peptide, PFGK (proline-phenylalanine-glycine-lysine), which interacted with plasminogen in fibrinolysis. The peptide and the peptide-initiator were characterized with MALDI-TOF mass spectrometry and $^1H$ NMR spectrometer. The peptide-polymer, pSt-PYGK was characterized by GPC, IR, $^1H$ NMR spectrometer and TLC. Spherical micellar aggregates were determined by TEM and SEM. Current synthesis methodology suggested opportunities to create the well-defined peptide-polymer hybrid materials with specific binding activity.