• 제목/요약/키워드: MALDI-TOF Mass

검색결과 271건 처리시간 0.026초

아무르 불가사리(Asterias amurensis)의 관족으로부터 신경성 펩타이드의 분리 및 정제 (Isolation and Purification of Neuropeptides from the Tube Feet of the Starfish Asterias amurensis)

  • 조미정;고혜진;김군도;박남규
    • 한국수산과학회지
    • /
    • 제47권2호
    • /
    • pp.129-134
    • /
    • 2014
  • Two neuropeptides were purified from the acidified tube feet extract of the starfish Asterias amurensis by C18 reversed phase and size-exclusion high-performance liquid chromatography (HPLC). The tube feet extract and the purified peptides (AST-I and AST-II) showed potent contractile activity on dorsal retractor muscle (DRM) of the starfish Asterina pectinifera and intestine (smooth muscle) of the panther puffer Takifugu pardalis. Treatment of the purified peptides with dithiothreitol (DTT) for 60 min at $37^{\circ}C$ significantly altered their retention times, suggesting that these compounds contained disulfide bonds. The molecular weights of AST-I and AST-II were determined to be 2064.2 Da and 6137.2 Da, respectively, by MALDI-TOF mass spectrometry.

Functional Characterization of the Gene Encoding UDP-glucose: Tetrahydrobiopterin $\alpha$-Glucosyltransferase in Synechococcus sp. PCC 7942

  • Cha En Young;Park Jeong Soon;Jeon Sireong;Kong Jin Seon;Cho Yong Kee;Ryu Jee Youn;Park Youn Il;Park Young Shik
    • Journal of Microbiology
    • /
    • 제43권2호
    • /
    • pp.191-195
    • /
    • 2005
  • In this study, we attempted to characterize the Synechococcus sp. pee 7942 mutant resultant from a disruption in the gene encoding UDP-glucose: tetrahydrobiopterin a-glucosyltransferase (BGluT). 2D­PAGE followed by MALDI-TOF mass spectrometry revealed that phycocyanin rod linker protein 33K was one of the proteins expressed at lower level in the BGluT mutant. BGluT mutant cells were also determined to be more sensitive to high light stress. This is because photosynthetic O$_2$ exchange rates were significantly decreased, due to the reduced number of functional PSIs relative to the wild type cells. These results suggested that, in Synechococcus sp. pee 7942, BH4-glucoside might be involved in photosynthetic photoprotection.

Structural Characterization of Non-reducing Oligosaccharide Produced by Arthrobacter crystallopoietes N-08

  • Bae, Bum-Sun;Shin, Kwang-Soon;Lee, Ho
    • Food Science and Biotechnology
    • /
    • 제18권2호
    • /
    • pp.519-525
    • /
    • 2009
  • A bacterial strain (Strain N-08) capable of extracellularly producing high level of non-reducing oligosaccharide (NR-OS) isolated from soil. The strain was identified phylogenetically by 16S rDNA sequence analysis and found to be very close to Arthrobacter crystallopoietes. The high production of NR-OS was observed in the basal culture medium containing maltose as a sole carbon source. The NR-OS in culture supernatant was purified by glucoamylase treatment and Dowex-1 (OH.) ion exchange chromatography and its structure was characterized. This oligosaccharide consisted of only glucose. Methylation analysis indicated that this fraction was composed mainly of non-reducing terminal glucopyranoside. Matrixassisted laser-induced/ionization time-of-flight (MALDI-TOF) and electrospray ionization-mass spectrometry (ESI-MS)/MS analyses suggested that this oligosaccharide comprised non-reducing disaccharide unit with 1,1-glucosidic linkage. When this disaccharide was analyzed by $^1H$-NMR and $^{13}C$-NMR, it gave the same signals with $\alpha$-D-glucopyranosyl-(1,1)-$\alpha$-Dglucopyranoside. These results indicated that the NR-OS produced by A. crystallopoietes N-08 was ${\alpha}1$,${\alpha}1$-trehalose. This is the first report of the trehalose which can be produced directly from maltose by A. crystallopoietes N-08.

Photoresponsive Arylether Dendrimers with Azobenzene Core and Terminal Vinyl Groups

  • Lee, Ji-Hye;Choi, Dae-Ock;Park, Ji-Eun;Shin, Eun-Ju
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권4호
    • /
    • pp.761-766
    • /
    • 2008
  • Photoresponsive arylether dendrimers Bis-azo-Gn(3,5) 1a-1c and Bis-azo-Gn(3,4,5) 2a-2c (n = 1-3) with an azobenzene unit at the core and several vinyl groups (3,5-bis(but-3-enyloxy)phenyl groups or 3,4,5-tris(but-3- enyloxy)phenyl groups) at the periphery have been prepared. Their structures and reversible trans-cis isomerization behaviors have been investigated by $^1H$-NMR, $^{13}C$-NMR, MALDI-TOF-Mass, and UV-vis spectra. All six azobenzene-cored dendrimers carried out very fast trans $\rightarrow$ cis photoisomerization on irradiation of 350 nm light and reached to the photostationary state within 180 s. During the dark incubation, slow thermal back reversion from cis to trans form is observed for all six dendrimers and is completed within 3 days for 1a-1c and 1 day for 2a-2c. Isomerization efficiency decreases with increasing generation. However, the initial reaction rates of both trans $\rightarrow$ cis photochemical isomerization and cis $\rightarrow$ trans thermal isomerization increases significantly with increasing generation for dendrimers for 1a-1c but only slightly for 2a-2c.

High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains

  • Choi, Sung-Sub;Kim, Ji-Sun;Song, Jooyoung;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권4호
    • /
    • pp.1120-1126
    • /
    • 2013
  • The syndecan family consists of four transmembrane heparan sulfate proteoglycans present in most cell types and each syndecan shares a common structure containing a heparan sulfate modified extracellular domain, a single transmembrane domain and a C-terminal cytoplasmic domain. To get a better understanding of the mechanism and function of syndecan-4 which is one of the syndecan family, it is crucial to investigate its three-dimensional structure. Unfortunately, it is difficult to prepare the peptide because it is membrane-bound protein that transverses the lipid bilayer of the cell membrane. Here, we optimize the expression, purification, and characterization of transmembrane, cytoplasmic and short extracellular domains of syndecan4 (syndecan-4 eTC). Syndecan-4 eTC was successfully obtained with high purity and yield from the M9 medium. The structural information of syndecan-4 eTC was investigated by MALDI-TOF mass (MS) spectrometry, circular dichroism (CD) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. It was confirmed that syndecan-4 eTC had an ${\alpha}$-helical multimeric structure like transmembrane domain of syndecan-4 (syndecan-4 TM) in membrane environments.

Purification of a Pore-forming Peptide Toxin, Tolaasin, Produced by Pseudomonas tolaasii 6264

  • Cho, Kwang-Hyun;Kim, Sung-Tae;Kim, Young-Kee
    • BMB Reports
    • /
    • 제40권1호
    • /
    • pp.113-118
    • /
    • 2007
  • Tolaasin, a pore-forming peptide toxin, is produced by Pseudomonas tolaasii and causes brown blotch disease of the cultivated mushrooms. P. tolaasii 6264 was isolated from the oyster mushroom damaged by the disease in Korean. In order to isolate tolaasin molecules, the supernatant of bacterial culture was harvested at the stationary phase of growth. Tolaasin was prepared by ammonium sulfate precipitation and three steps of chromatograpies, including a gel permeation and two ion exchange chromatographies. Specific hemolytic activity of tolaasin was increased from 1.7 to 162.0 HU $mg^{-1}$ protein, a 98-fold increase, and the purification yield was 16.3%. Tolaasin preparation obtained at each purification step was analyzed by HPLC and SDS-PAGE. Two major peptides were detected from all chromatographic preparations. Their molecular masses were analyzed by MALDI-TOF mass spectrometry and they were identified as tolaasin I and tolaasin II. These results demonstrate that the method used in this study is simple, time-saving, and successful for the preparation of tolaasin.

2-D 전기영동 분석을 통한 $H_2O_2$와 연계된 효모 시스템 NDPK에 관한 연구 (Two-dimensional Electrophoretic Analysis of Nucleotide phosphate Kinase Mediated Hydrogen Peroxide Cross-linking in Saccharamyces cerevisiae)

  • 문혜정;윤대진;박창호
    • KSBB Journal
    • /
    • 제21권1호
    • /
    • pp.16-19
    • /
    • 2006
  • 최근의 연구에 의하면 열이나, 산화적 스트레스에 대해서 NDPK는 구조적인 변화를 유발하며, 효소 활성과 구조가 oxidant에 의해 변화된다는 보고를 근거로 하여 정상적인 효모균주와 효모의 NDPK 유전자가 파괴된 mutant에서, 산화적 스트레스에 관련된 역할을 규명하고자 2-D 전기영동 방법을 통해서, $H_2O_2$의 처리전과 처리 후에 전사패턴이 변화된 유전자들, 즉, 산화적조절 신호체제에 연관되어졌을 것이라고 생각되어지는 몇 개의 단백질 리스트를 얻었다. 이 결과는 NDPK의 redox state의 조절에 관련된 효소의 성질을 규명함에 있어 유용한 유전자 신호 체제정보를 제공할 것으로 생각되어진다.

Proteomic Analysis of Proteins of Weissella confusa 31 Affected by Bile Salts

  • Lee, Kang Wook;Lee, Seung-Gyu;Han, Nam Soo;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권10호
    • /
    • pp.1432-1440
    • /
    • 2012
  • Weissella confusa 31, an isolate from human feces, possesses desirable properties as a probiotic strain, including bile salt resistance. W. confusa 31 is not inhibited by bile salts up to 0.3% concentration. Proteins affected by bile salts (0.05%) were examined by 2-D gel electrophoresis. Our proteomic analyses revealed that the intensities of 29 spots were changed, where 17 increased (including 2 spots observed only under the bile salts stress conditions) and 12 decreased. Proteins were identified by MALDI-TOF mass spectrometry. Proteins increased in the band intensities included adenylate kinase (12.75-fold increase), Clp-like ATP-dependent protease (11.91-fold), 6-phosphogluconate dehydrogenase (10.35-fold), and HSP 70 (5.07-fold). Some of the increased or decreased proteins are also known to be involved in other types of stress responses.

Proteomic Dissection of Abiotic Stress Response in Crop Plants

  • Alam, Iftekhar;Sharmin, Shamima Akhtar;Lee, Byung-Hyun
    • 한국환경농학회:학술대회논문집
    • /
    • 한국환경농학회 2011년도 30주년 정기총회 및 국제심포지엄
    • /
    • pp.196-204
    • /
    • 2011
  • Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. In addition, future agricultural production and management will encounter multifaceted challenges from global climate change. Therefore, it is necessary to study the molecular response of crop plants to the stresses in order to develop appropriate strategies to sustain food production under adverse environmental conditions. We carried out a large scale proteomic analysis of soybean plants in response to various abiotic stresses, including drought, salinity, waterlogging and their interactions. Proteins were analyzed by two dimensional polyacrylamide gel electrophoresis followed by matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. The identified proteins are involved in a wide range of cellular functions. In addition to the well known stress-associated proteins, we identified several novel proteins, which were not reported before. In many cases our proteomic data bridges the gap between mRNA and metabolite data. Our studie provides new insights into identification of abiotic stress responsive proteins in soybean, and demonstrates the advantages of proteomic analysis in dissecting metabolic and regulatory networks.

  • PDF

Zinc Ions Affect Siderophore Production by Fungi Isolated from the Panax ginseng Rhizosphere

  • Hussein, Khalid Abdallah;Joo, Jin Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권1호
    • /
    • pp.105-113
    • /
    • 2019
  • Although siderophore compounds are mainly biosynthesized as a response to iron deficiency in the environment, they also bind with other metals. A few studies have been conducted on the impact of heavy metals on the siderophore-mediated iron uptake by microbiome. Here, we investigated siderophore production by a variety of rhizosphere fungi under different concentrations of $Zn^{2+}$ ion. These strains were specifically isolated from the rhizosphere of Panax ginseng (Korean ginseng). The siderophore production of isolated fungi was investigated with chrome azurol S (CAS) assay liquid media amended with different concentrations of $Zn^{2+}$ (50 to $250{\mu}g/ml$). The percentage of siderophore units was quantified using the ultra-violet (UV) irradiation method. The results indicated that high concentrations of $Zn^{2+}$ ion increase the production of siderophore in iron-limited cultures. Maximum siderophore production by the fungal strains was detected at $Zn^{2+}$ ion concentration of $150{\mu}g/ml$ except for Mortierella sp., which had the highest siderophore production at $200{\mu}g/ml$. One potent siderophore-producing strain (Penicillium sp. JJHO) was strongly influenced by the presence of $Zn^{2+}$ ions and showed high identity to P. commune (100% using 18S-rRNA sequencing). The purified siderophores of the Penicillium sp. JJHO strain were chemically identified using UV, Fourier-transform infrared spectroscopy (FTIR), and matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) spectra.