• 제목/요약/키워드: MAC Method Free Surface

검색결과 24건 처리시간 0.017초

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of a Near shore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.7-15
    • /
    • 2003
  • A Digital Wave Tank simulation technique, based on a finite-difference method and a modified marker-and-cell (MAC) algorithm, is applied in order to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach, Ohkushiri Island, and to predict maximum wove run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain, and the boundary values are updated at each time step, by a finite-difference time-marching scheme in the frame of the rectangular coordinate system. The fully nonlinear, kinematic, free-surface condition is satisfied by the modified marker-density function technique. The near shore Tsunami is assumed to be a solitary wave, and is generated from the numerical wave-maker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods, based on the shallow-water wave theory.

디지털 수치수조 기법에 의한 연안 Tsunami의 수치 시뮬레이션 (Numerical Simulation of Nearshore Tsunami Using a Digital Wave Tank Simulation Technique)

  • 박종천;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.231-239
    • /
    • 2003
  • A Digital Wave Tank simulation technique based on a finite-difference method and a modified marker-and-cell (MAC) algorithm is applied to investigate the characteristics of nonlinear Tsunami propagations and their interactions with a 2D sloping beach and Ohkushiri island, and to predict maximum wave run-up around the island. The Navier-Stokes (NS) and continuity equation are governed in the computational domain and the boundary values updated at each time step by a finite-difference time-marching scheme in the frame of rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the modified marker-density function technique. The Nearshore Tsunami is assumed to be a solitary wave and generated from the numerical wavemaker in the developed Digital Wave Tank. The simulation results are compared with the experiments and other numerical methods based on the shallow-water wave theory.

  • PDF

유한차분법에 의한 임의 선체주위의 조파 Simulation (A Numerical Simulation of Ship Waves by Finite Difference Method)

  • 조규종;이강훈;이영길
    • 대한조선학회논문집
    • /
    • 제28권2호
    • /
    • pp.77-94
    • /
    • 1991
  • 일정속도로 항주하는 배에 치하여 생성되는 파를 유한차분법을 이용하여 수치적으로 시뮬레이션 하였다. 지배방정식으로는 3차원 운동량방정식(Euler Eq.)과 연속방정식을 사용하였으며, 직교 좌표 계상에서의 수치계산은 FTCS(forward time/central space)로 차분화하고 시간전진 방법(time marching scheme)으로 수행하였다. 좌표계로 staggered variable mesh system을 채용하여 기존의 계산조직을 개선하므로써, 유체 유동의 변화가 심한 선체주위에 계산 정도를 높이기 위하여 cell을 집중시켰다. 개선된 전산프로그램을 이용하여 Wigley, Series 60($C_{b}$=0.6), 그리고 MS416B 산적화물선 선형등을 대상으로 수치계산을 수행하였으며, 그 결과들을 실험값과 비교하였다.

  • PDF

복잡한 해면효과익선 계산 모형 주위의 3차원 유동장의 수치계산 (Three-Dimensional Flow Simulations around a Numerical Model of Wing-In-Ground(WIG) Effect Ship having the complex geometry)

  • 박종천;신명수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1996년도 춘계 학술대회논문집
    • /
    • pp.85-92
    • /
    • 1996
  • Numerical simulations are made for the three-dimensional flow around a wing in ground effect craft haying the complex geometry. A numerical tool is developed for the primary design of hull and wing shape of practical Wing-In-Ground effect(WIG) stop. The finite-difference method is utilized to descretize the governing equations and pressure field is obtained by using Marker-And-Cell(MAC) method. The air and water flows are simultaneously simulated in the time-marching solution procedure for the Navier-Stokes equation. The porosity technique and the density function are devised for the implementation of the three-dimensional body-boundary and the free-surface conditions, respectively. In this paper, a craft is modeled simply by three blocks containing a wing mounted on a main body horizontally, with the endplate. The numerical calculations of a WIG advancing in a calm water are performed and the WIG-generated wave profiles are also obtained. In the final paper, details of the numerical methods employed for the present study and calculated results are discussed.

  • PDF