• Title/Summary/Keyword: MAC(Modal Assurance Criteria)

Search Result 15, Processing Time 0.018 seconds

Progressive damage detection of thin plate structures using wavelet finite element model updating

  • He, Wen-Yu;Zhu, Songye;Ren, Wei-Xin
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.277-290
    • /
    • 2018
  • In this paper, wavelet finite element model (WFEM) updating technique is employed to detect sub-element damage in thin plate structures progressively. The procedure of WFEM-based detection method, which can detect sub-element damage gradually, is established. This method involves the optimization of an objective function that combines frequencies and modal assurance criteria (MAC). During the damage detection process, the scales of wavelet elements in the concerned regions are adaptively enhanced or reduced to remain compatible with the gradually identified damage scenarios, while the modal properties from the tests remains the same, i.e., no measurement point replacement or addition are needed. Numerical and experimental examples were conducted to examine the effectiveness of the proposed method. A scanning Doppler laser vibrometer system was employed to measure the plate mode shapes in the experimental study. The results indicate that the proposed method can detect structural damage with satisfactory accuracy by using minimal degrees-of-freedoms (DOFs) in the model and minimal updating parameters in optimization.

Multi-dimensional sensor placement optimization for Canton Tower focusing on application demands

  • Yi, Ting-Hua;Li, Hong-Nan;Wang, Xiang
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.235-250
    • /
    • 2013
  • Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. According to the mathematical background and implicit assumptions made in the triaxial effective independence (EfI) method, this paper presents a novel multi-dimensional OSP method for the Canton Tower focusing on application demands. In contrast to existing methods, the presented method renders the corresponding target mode shape partitions as linearly independent as possible and, at the same time, maintains the stability of the modal matrix in the iteration process. The modal assurance criterion (MAC), determinant of the Fisher Information Matrix (FIM) and condition number of the FIM have been taken as the optimal criteria, respectively, to demonstrate the feasibility and effectiveness of the proposed method. Numerical investigations suggest that the proposed method outperforms the original EfI method in all instances as expected, which is looked forward to be even more pronounced should it be used for other multi-dimensional optimization problems.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

2D and 3D Topology Optimization with Target Frequency and Modes of Ultrasonic Horn for Flip-chip Bonding (플립칩 접합용 초음파 혼의 목표 주파수와 모드를 고려한 2차원 및 3차원 위상최적화 설계)

  • Ha, Chang Yong;Lee, Soo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.84-91
    • /
    • 2013
  • Ultrasonic flip-chip bonding needs a precise bonding tool which delivers ultrasonic energy into chip bumps effectively to use the selected resonance mode and frequency of the horn structure. The bonding tool is excited at the resonance frequency and the input and output ports should locate at the anti-nodal points of the resonance mode. In this study, we propose new design method with topology optimization for ultrasonic bonding tools. The SIMP(solid isotropic material with penalization) method is used to formulate topology optimization and OC(optimal criteria) algorithm is adopted for the update scheme. MAC(modal assurance criterion) tracking is used for the target frequency and mode. We fabricate two prototypes of ultrasonic tools which are based on 3D optimization models after reviewing 2D and 3D topology optimization results. The prototypes are satisfied with the ultrasonic frequency and vibration amplitude as the ultrasonic bonding tools.

A Study on the Modal Parameters for Cable System of Bridge (교량 케이블시스템의 모드변수에 관한 연구)

  • Lee, Hyunchol;Jo, Yeong-hoon;Kim, Jinsoo;Park, Kyoungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.48-59
    • /
    • 2019
  • In recent years, the type of bridge where cables such as suspension bridge and cable-stayed bridge are the main factors in the construction of long-range bridges has been soaring. The effects of cables on these structures are very large, and for structural analysis, it is necessary to study the cable and the structural changes according to the mode characteristics of the cables. In particular, cables are directly connected to camber adjustment, which conveys load effects on girders to tower, and are important components in the overall structure, and since the initial tension on the construction is compared with the tension over time, this study was conducted to help identify the condition of the bridge's aging and abnormalities. Therefore, in this study, the characteristics of the mode from the mode analysis through the impact hammer to the mass of the cable and the change in the length of the cable are analyzed.