• Title/Summary/Keyword: MAC(Media Access Control) protocol

Search Result 104, Processing Time 0.02 seconds

Throughput Analysis of R-NAD in MIL-STD-188-220 (MIL-STD-188-220의 R-NAD 처리율 분석)

  • Kim, Sangsoo;Gu, Sungmo;Lim, Jaesung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.561-568
    • /
    • 2014
  • The Republic of Korea Army is using R-NAD of MIL-STD-188-220 as a Media Access Control protocol. Under urgent situations, almost all stations transmit data frames and then the network will reach a saturation state. Several articles have been devoted to the study of R-NAD performance. However, most of them focus on comparing the performance of some NADs using network simulation tools. We propose an analytical model to compute the throughput of R-NAD under the assumption of a network traffic saturation. Analytical results were verified by Monte Carlo methods. We have shown that the performance of a success probability and an average idle time remains almost unchanged as the total number of stations increases. We have also shown that Type 1/2/4 operation mode outperforms Type 3 operation mode in throughput. The results showed that the system with a squelch detection achieved a better performance than the one without it. The longer DATA time had a higher throughput.

An Adaptive FEC Mechanism Using Crosslayer Approach to Enhance Quality of Video Transmission over 802.11 WLANs

  • Han, Long-Zhe;Park, Sung-Jun;Kang, Seung-Seok;In, Hoh-Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.341-357
    • /
    • 2010
  • Forward Error Correction (FEC) techniques have been adopted to overcome packet losses and to improve the quality of video delivery. The efficiency of the FEC has been significantly compromised, however, due to the characteristics of the wireless channel such as burst packet loss, channel fluctuation and lack of Quality of Service (QoS) support. We propose herein an Adaptive Cross-layer FEC mechanism (ACFEC) to enhance the quality of video streaming over 802.11 WLANs. Under the conventional approaches, FEC functions are implemented on the application layer, and required feedback information to calculate redundancy rates. Our proposed ACFEC mechanism, however, leverages the functionalities of different network layers. The Automatic Repeat reQuest (ARQ) function on the Media Access Control (MAC) layer can detect packet losses. Through cooperation with the User Datagram Protocol (UDP), the redundancy rates are adaptively controlled based on the packet loss information. The experiment results demonstrate that the ACFEC mechanism is able to adaptively adjust and control the redundancy rates and, thereby, to overcome both of temporary and persistent channel fluctuations. Consequently, the proposed mechanism, under various network conditions, performs better in recovery than the conventional methods, while generating a much less volume of redundant traffic.

Improvement of Unicast Traffic Performance in High-availability Seamless Redundancy (HSR) Using Port Locking (PL) Algorithm (Port Locking (PL) 알고리즘을 이용한 HSR (High-availability Seamless Redundancy)의 유니캐스트 트래픽 성능개선)

  • Abdulsam, Ibraheem Read;Kim, Se Mog;Choi, Young Yun;Rhee, Jong Myung
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • High-availability seamless redundancy (HSR) is a protocol for fault-tolerant Ethernet (FTE) networks. It provides two frame copies and each copy is forwarded on a separate physical path, which provides zero fail-over time. Therefore, the HSR is becoming a potential candidate for various real-time FTE applications. However, the generation and circulation of unnecessary frames due to the duplication of every sending frame is inherent drawback of HSR. Such drawback degrades the performance of the network and may deplete its resources. In this paper, we present a new algorithm called port locking (PL) based on the media access control (MAC) address to solve the abovementioned problem in popular connected-rings network. Our approach makes the network gradually learn the locations of the source and the destination nodes without relying on network control frames. It then prunes all the rings that do not contain the destination node by locking corresponding rings' entrance ports. With the PL algorithm, the traffic can be significantly reduced and therefore the network performance will be greatly enhanced specially in a large scale connected-rings network. Analytical results are provided to validate the PL algorithm.

Performance Analysis of the Gated Service Scheduling for Ethernet PON (Ethernet PON을 위한 Gated Service 스케줄링의 성능분석)

  • 신지혜;이재용;김병철
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.7
    • /
    • pp.31-40
    • /
    • 2004
  • In this paper, we analyze mathematically the performance of the gated service scheduling in the Interleaved Polling with Adaptive Cycle Time(IPACT) was proposed to control upstream traffic for Gigabit Ethernet-PONs. In the analysis, we model EPON MAC protocol as a polling system and use mean value analysis. We divide arrival rate λ into three regions and analyze each region accordingly In the first region in which λ value is very small, there are very few ONUs' data to be transmitted. In the second region in which λ has reasonably large value, ONUs have enough data for continuous transmission. In the third region, ONUs' buffers are always saturated with data since λ value is very large. We obtain average packet delay, average Queue size, average cycle time of the gated service. We compare analysis results with simulation to verify the accuracy of the mathematical analysis. Simulation requires much time and effort to evaluate the performance of EPONs. On the other hand, mathematical analysis can be widely used in the design of EPON systems because system designers can obtain various performance results rapidly. We can design appropriate EPON systems for varioustraffic property by adjusting control parameters.