• 제목/요약/키워드: MA powder

검색결과 188건 처리시간 0.023초

Al-4at.%Zr합금의 기계적합금화 공정과 열처리과정에서 발생하는 상변화거동 (Phase Transformation in Al-4at.%Zr Alloy during Mechanical Alloying and Heat-treatment Processes)

  • 박재필;김일호;권숙인
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.36-42
    • /
    • 2005
  • Four different mechanical alloying(MA) processes were employed to fabricate very fine intermetallic compound $Al_3Zr$ particles dispersed Al composite materials(MMC) with Al-4at.%Zr composition. Phase transformations including phase stability during MA and heat treatment processes were investigated. Part of Zr atoms were dissolved into Al matrix and part of them reacted with hydrogen produced by decomposition of PCA(methanol) to form hydride $ZrH_2$ during first MA process. These $ZrH_2$ hydrides disappeared when alloy powders were heat treated at $500^{\circC}$. Stable $Al_3Zr$ dispersoids with $DO_23$ structure were formed by heat treating the mechanically alloyed powders at $400^{\circC}$. On the other hand, metastable $Al_3Zr$dispersoids with $L1_2$ structure were formed during first MA of powers with Al-25at.%Zr composition. These metastable $Al_3Zr$ dispersoids transformed to stable $Al_3Zr$ with $DO_23$ structure when heat treated above $450^{\circC}$.

The Influence of Hi-flux Powders Characteristics on the Performance of Magnetic Powder Cores

  • Zhao, Tong Chun;Ma, Hong Qiu;Ding, Fu Chang
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.451-452
    • /
    • 2006
  • The influence of Hi-flux powders characteristics on the performance of magnetic powder cores was studied. It was found that different cooling rate and nozzle configuration could change the shape and microstructure of powders. Smooth surface and spherical shape of powders were beneficial to improve DC bias performance and reduce core losses of magnetic powder core.

  • PDF

고상공정에 의해 제조된 AIN-Cu 나노복합재료의 조직 특성과 열팽창계수 측정에 관한 연구 (Microstructural Characteristics and Thermal Expansion Coefficient of AlN-Cu Nanocomposite Materials Prepared by Solid State Processing)

  • 이광민;이지성;이승익;김지순
    • 한국재료학회지
    • /
    • 제11권10호
    • /
    • pp.863-868
    • /
    • 2001
  • The present study was carried out to investigate the effect of MA processing variables on the microstructural properties of composite powders and the coefficient of thermal expansion of pulse electric current sintered AlN-Cu powder compacts. The AlN-Cu powders had a size of less than 15 $\mu\textrm{m}$ with 25 nm size of copper crystallite after MA 32 hours. The finely distributed AlN-Cu powder compacts were completely achieved after PECS. The residual oxygen was considerably removed after hydrogen reduction treatment. The residual carbon was completely removed to 97%. The CTE of AlN-Cu powder compacts showed a good consistency with Kingery-Tuner model when the volume fraction of copper was less than 60%. When it was more than 60%, the CTE had a good agreement with Series model.

  • PDF

기계적 합금법으로 제조된 MA754 산화물 분산강화 합금의 마찰압접에 관한 연구 (Friction Welding of MA754 ODS Alloy Produced by Mechanical Alloying)

  • 강지훈
    • 한국분말재료학회지
    • /
    • 제1권2호
    • /
    • pp.198-207
    • /
    • 1994
  • In order to find an optimal friction-welding condition for Ni-base ODS alloy (MA 754) produced by mechanical alloying, joint experiments were performed with various conditions of friction pressures (50~500 MPa), friction times (1~5 sec) and upset pressures (50~600 MPa). The optimal friction pressure and upset pressure must be above 400 MPa and 500 MPa, respectively, which are determined by tensile strengths and fracture features of as-welded joints. A maximum stress설h of 975 MPa could be obtained under these pressure conditions at friction time of 2 sec. Microstructural features of bonded interface by optical microscope and SEM revealed that the interface regions of all specimens are consisted with three distinct regions and defects such as voids, cracks and wavy interfaces exist in the joints produced under not-optimized conditions. EDS results showed that these defects include oxides composed with elements of Al, Y and Ti. The hardness on the bonded interface was higher than in the base metal region. Specimens fractured in bonded interface region had lower strength values compared to those fractured in base metal region. Surfaces of the former showed a typical intergranular fracture.

  • PDF

Preparation of Intermetallic Compound of Ternary Al-B-C System by Mechanical Alloying

  • Takahashi, Teruo;Yamashita, Michiru;Yamada, Kazutoshi;Kohzuki, Hidenori
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1033-1034
    • /
    • 2006
  • Metallic compound of ternary Al-B-C system was prepared by mechanical alloying (MA) using Al, boron and graphite powders as starting materials. MA was carried out using Spex 8000 mixer/mill for 50 hours in an argon atmosphere without process control reagent such as methyl alcohol. The MA powders obtained were heat-treated in vacuum at the temperature of 873 and 1273 K for 5 hour. Pure ternary Al-B-C compound was obtained in the chemical content of Al:B:C=55:27:18. The ternary compound obtained in this study has a new phase whose crystal structure is not identified yet.

  • PDF

기계적 합금화 시료에서 미소상 피이크의 소멸현상 해석(II) (Detail analysis of the peak disappearance of minor phase in mechanically alloyed samples(II))

  • 김혜성
    • 한국산업융합학회 논문집
    • /
    • 제4권1호
    • /
    • pp.27-34
    • /
    • 2001
  • Refining of powder particles and their dissolution into the Al matrix during mechanical alloying(MA) were investigated by using X-ray diffraction(XRD) transmission electron microscopy (TEM) functions of alloy composition, milling time and ball to powder ratio(BPR). It is found that Ti particles less than 20nm are observed in a dark field image of mechanically alloyed Al-10wt%Ti whose XHD pattern exhibits no Ti peak. The observed change of lattice constant of AI indicates that about 1 wt%Ti can he solved in Al after MA for a long time, independent of alloy composition, milling time and BPR, suggesting that most of Ti particles arc retained in the Al matrix. It is concluded that the disappearance of XRD peaks in mechanically alloyed Al-10wt%Ti is not simply attributable to the dissolution of Ti into Al, but associated mainly with extreme refining and/or heavy straining of Ti Particles.

  • PDF

기계적 합금화법에 의한 ${\beta}-FeSi_2$ 분말 함성 (Synthesis of ${\beta}-FeSi_2$ Powder by Mechanical Alloying Process)

  • 이충효;조재문;김환태;권영순
    • 한국분말재료학회지
    • /
    • 제8권2호
    • /
    • pp.104-109
    • /
    • 2001
  • The semiconducting ${\beta}-FeSi_2$ compound has been recognized as a thermoelectric material with excel-lent oxidation resistance and stable characteristics at elevated temperature. In the present work, we applied mechanical alloying(MA) technique to produce ${\beta}-FeSi_2$ compound using a mixture of elemental iron and silicon powders. The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K $\alpha$ radiation, thermal analysis and scanning electron microscopy. The single ${\beta}-FeSi_2$ phase has been obtained by mechanical alloying of $Fe_{33}Si_{67}$ mixture powders for 120 hrs or for 70 hrs coupled with the subsequent heat treatment up to $700^{\circ}C$. The grain size of ${\beta}-FeSi_2$ powders analyzed by Hall plot method was 44nm.

  • PDF