• Title/Summary/Keyword: MA powder

Search Result 188, Processing Time 0.029 seconds

Effects of dietary Enteromorpha powder on reproduction-related hormones and genes during the late laying period of Zi geese

  • Ma, Wei Qing;Zhao, Dan Hua;Cheng, Huang Zuo;Wang, Si Bo;Yang, Ji;Cui, Hong Xia;Lu, Ming Yuan;Wu, Hong Zhi;Xu, Li;Liu, Guo Jun
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.457-462
    • /
    • 2021
  • Objective: The aim of this study was to investigate the effects of Enteromorpha powder supplementation on reproduction-related hormones and genes in the late laying period of Zi geese. Methods: A total of 312 (1-year-old) Zi geese with similar laying rate were randomly divided into 2 groups with 6 replicates each, each with 21 female geese and 5 male geese. The control group was fed with a basal diet and the test group was fed with a diet containing 3% Enteromorpha powder. The trial period lasted for 7 weeks. Results: Our results showed that the laying rate was improved in the test group at each week of trial (p<0.01), and the levels of estradiol in serum and prolactin in ovary were increased compared with the control group (p<0.05). Conclusion: Based on above results, Enteromorpha powder supplementation at 3% could promote reproductive performance during the late laying period of Zi geese.

Synthesis and Properties of InP/ZnS core/shell Nanoparticles with One-pot process (One-pot 공정을 이용한 InP/ZnS core/shell 나노결정 합성 및 특성 연구)

  • Joo, So Yeong;Hong, Myung Hwan;Kang, Leeseung;Kim, Tae Hyung;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.11-16
    • /
    • 2017
  • In this study, simple chemical synthesis of green emitting Cd-free InP/ZnS QDs is accomplished by reacting In, P, Zn, and S precursors by one-pot process. The particle size and the optical properties were tailored, by controlling various experimental conditions, including [In]/[MA] (MA: myristic acid) mole ratio, reaction temperature and reaction time. The results of ultraviolet-visible spectroscopy (UV-vis), and of photoluminescence (PL), reveal that the exciton emission of InP was improved by surface coating, with a layer of ZnS. We report the correlation between each experimental condition and the luminescent properties of InP/ZnS core/shell QDs. Transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) techniques were used to characterize the as-synthesized QDs. In contrast to core nanoparticles, InP/ZnS core/shell treated with surface coating shows a clear ultraviolet peak. Besides this work, we need to study what clearly determines the shell kinetic growth mechanism of InP/ZnS core shell QDs.

Formation of Al3Ti From Mechanically Alloyed Hyper-Peritectic Al-Ti Powder (기계적 합금화법으로 제조된 과포정 Al-Ti 합금에서 Al3Ti 형성에 관한 연구)

  • Kim, Hye-Sung;Suhr, Dong-Soo;Kim, Gyeung-Ho;Kum, Dong-Wha
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • Mechanical alloying is an effective process to finely distribute inert dispersoids in an Al-TM(TM is a transition metal) system. It has been considered that high melting point aluminides are formed by precipitation from supersaturated Al(Ti) powder. This analysis is based on the fact that much higher content of TM than the solubioity can be dissolved in alpha aluminum during the high energy ball milling. Thus, decomposition behavior of Ti in the Al(Ti) was considered very important. But it is confirmed that the higher portion of Ti than Al(Ti) solid solution is existed as nano-sized Ti particles in the MA powders by high energy ball nilling from the XRD spectrum and TEM analysis in this study. Therefore, the role of undissolved TM particles affect the formation of aluminides should be suitably considered. In this study, we present experimental observation on the formation of $Al_3Ti$ fron mechanical alloyed Al-Ti alloys in the hyperperitectic region. This study showed that, in the mechanically alloyed Al-20wt%Ti specimen, intermediate phase of cubic $Al_3Ti$ and tetragonal $Al_{24}Ti_8$ formed at $300{\sim}400^{\circ}C$ and $400{\sim}500^{\circ}C$, respectively, before the MA state reaches to equilibrium at higher temperatures. The formation behavior of $Ll_2-Al_3Ti$ is interpreted by interdiffusion of Al and Ti in solid state based on the fact that large amount of nano-sized Ti particles exist in the milled powder. Present analysis indicated undissolved Ti particles of nanosize should have played an important role initiation the formation of $Al_3Ti$ phase during annealing.

  • PDF

Effect of Electron Beam Irradiation on Microbial Qualities of Whole Black Pepper Powder and Commercial Sunsik (전자선 조사가 통후추 분말과 시판 선식의 미생물학적 안전성 및 품질에 미치는 영향)

  • Ko, Jong-Kwan;Ma, Yu-Hyun;Song, Kyung-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.308-311
    • /
    • 2005
  • Electron beam irradiation was applied to examine microbial safety and qualities of black pepper powder and commercial Sunsik. Whole black pepper powder and commercial Sunsik were irradiated at 2, 4, 8, 12, and 16 kGy. Microorganism contamination in black pepper powder and commercial Sunsik were significantly decreased by irradiation. Decimal reduction doses ($D_{10}\;value$) of total bacteria count in black pepper powder and commercial Sunsik were 5.32 and 1.56 kGy, respectively. $D_{10}\;value$ of yeast and mold were 2.54 and 2.14 kGy for black pepper powder and commercial Sunsik, respectively. Electron beam irradiation caused negligible changes in Hunter color L, a, and b values. Sensory evaluations of black pepper powder and commercial Sunsik showed no significant changes among samples. These results indicate electron beam irradiation improves microbial safety and qualities of black pepper powder and commercial Sunsik.

Fabrication and densification of magnetic α-Fe/Al2O3 nanocomposite by mechanical alloying (기계적합금화에 의한 α-Fe/Al2O3 자성 나노복합재료의 제조 및 치밀화)

  • Lee, Chung-Hyo;Kim, Han-Woong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.314-319
    • /
    • 2013
  • Fabrication of nanocomposite material for the $Fe_2O_3-Al$ system by mechanical alloying (MA) has been investigated at room temperature. It is found that ${\alpha}-Fe/Al_2O_3$ nanocomposite powders in which $Al_2O_3$ is dispersed in ${\alpha}-Fe$ matrix are obtained by mechanical alloying of $Fe_2O_3$ with Al for 5 hours. The change in magnetization and coercivity also reflects the details of the solid state reduction process of hematite by pure metal of Al during mechanical alloying. Densification of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $1000^{\circ}C$ and $1100^{\circ}C$ under 60 MPa. Shrinkage change after SPS of MA'ed sample for 5 hrs was significant above $700^{\circ}C$ and gradually increased with increasing temperature up to $1100^{\circ}C$. X-ray diffraction result shows that the average grain size of ${\alpha}-Fe$ in ${\alpha}-Fe/Al_2O_3$ nanocomposite sintered at $1100^{\circ}C$ is in the range of 180 nm. It can be also seen that the coercivity (Hc) of SPS sample sintered at $1000^{\circ}C$ is still high value of 88 Oe, suggesting that the grain growth of magnetic ${\alpha}-Fe$ phase during SPS process tend to be suppressed.

A Study on Synthesis of Ni-Ti-B Alloy by Mechanical Alloying from Elemental Component Powder

  • Kim, Jung Geun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.202-206
    • /
    • 2016
  • A Ni-Ti-B alloy powder prepared by mechanical alloying (MA) of individual Ni, Ti, and B components is examined with the aim of elucidating the phase transitions and crystallization during heat treatment. Ti and B atoms penetrating into the Ni lattice result in a Ni (Ti, B) solid solution and an amorphous phase. Differential thermal analysis (DTA) reveals peaks related to the decomposition of the metastable Ni (Ti, B) solid solution and the separation of equilibrium $Ni_3Ti$, $TiB_2$, and ${\tau}-Ni_20Ti_3B_6$ phases. The exothermal effects in the DTA curves move to lower temperatures with increasing milling time. The formation of a $TiB_2$ phase by annealing indicates that the mechanochemical reaction of the Ni-Ti-B alloy does not comply with the alloy composition in the ternary phase diagram, and Ti-B bonds are found to be more preferable than Ni-B bonds.

Phase Formation Behavior of Mechanical Alloyed Al-25at% Nb Powder Mixtures (기계적 합금화에 의한 Al-25at%Nb 혼합분말의 상형성 거동)

  • 이상호;김동관;이진형
    • Korean Journal of Materials Research
    • /
    • v.5 no.8
    • /
    • pp.997-1004
    • /
    • 1995
  • Intermetallic compound NbAl₃and amorphous phases were synthesized by mechanical alloying of elemental powder mixtures of niobium and aluminum. The composition of the powder mixtures was Nb-45wt%Al(75at%Al). The mechanical alloying was performed with a high energy SPEX 8000 mixer/mill up to 72 hrs. The resulting powders were analyzed by XRD, DTA, SEM and TEM. The mechanically alloyed powders exhibited lamellar structures in the early stage. And the elements of Nb and Al were homogeneously distributed over the Powder when a steady state was reached. An intermetallic compound, NbAl₃, was formed by mechanical alloying for 4 hrs. The mechanically alloyed powders exhibited a large exotherm around 600℃, corresponding to formation of stable NbAl₃and stress relief.

  • PDF

Preparation and Characterization of Polypropylene/Waste Ground Rubber Tire Powder Microcellular Composites by Supercritical Carbon Dioxide

  • Zhang, Zhen Xiu;Lee, Sung-Hyo;Kim, Jin-Kuk;Zhang, Shu Ling;Xin, Zhen Xiang
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.404-410
    • /
    • 2008
  • In order to obtain 'value added products' from polypropylene (PP)/waste ground rubber tire powder (WGRT) composites, PP/WGRT microcellular foams were prepared via supercritical carbon dioxide. The effects of blend composition and processing condition on the cell size, cell density and relative density of PP/WGRT micro-cellular composites were studied. The results indicated that the microcellular structure was dependent on blend composition and processing condition. An increased content of waste ground rubber tire powder (WGRT) and maleic anhydride-grafted styrene-ethylene-butylene-styrene (SEBS-g-MA) reduced the cell size, and raised the cell density and relative density, whereas a higher saturation pressure increased the cell size, and reduced the cell density and relative density. With increasing saturation temperature, the cell size increased and the relative density decreased, whereas the cell density initially increased and then decreased.

Synthesis and characterization of Mg-Si thermoelectric compound subjected to mechanical alloying (기계적 합금화에 의한 Mg-Si계 열전화합물의 합성 및 평가)

  • Lee, Chung-Hyo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.121-127
    • /
    • 2007
  • We have applied mechanical alloying (MA) to get $Mg_2Si$ thermoelectric material with nano-sized grains. An optimal milling and heat treatment conditions to obtain the single phase of $Mg_2Si$ compound with fine microstructure were investigated by X-ray diffraction and differential scanning calorimetry (DSC) measurement. The $Mg_{66.7}Si_{33.3}$ MA samples ball-milled for $20{\sim}180\;hrs$ exhibit two broad exothermic heat releases around $220^{\circ}C$ and $570^{\circ}C$. On the other hand, MA sample ball-milled far 260 hrs exhibits only a sharp exothermic peak at $230^{\circ}C$ Single phase Mg2Si powder can be obtained by MA of $Mg_{66.7}Si_{33.3}$ mixture for 60 hours and subsequently heated up to $620^{\circ}C$. Sintering of the MA powders was performed in a spark plasma sintering (SPS) machine using graphite dies at $800{\sim}900^{\circ}C$ under 50 MPa. The shrinkage of sintering sample during SPS was significant at about $200^{\circ}C$. All compact bodies have a high relative density above 94% with metallic glare on the surface.

Preparation of Nanocomposite Metal Powders in Metal-Carbon System by Mechanical Alloying Process (기계적 합금화 방법에 의한 금속-카본계에서의 나노복합금속분말의 제조)

  • Kim, Hyun-Seung;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.328-336
    • /
    • 1998
  • In metal-carbon system with no mutual solubility between matrix and alloying elements as solid or liquid phases, Cu-C-X nanocomposite metal powders were prepared by high energy ball milling for solid-lubricating bronze bearings. Elemental powder mixtures of Cu-lOwt.%C- 5wt. %Fe and Cu- lOwt. %C- 5wt. %Al were mechanically alloyed with an attritor in an argon atmosphere, and then microstructural evolution of the Cu-C-X nanocomposite metal powders was examined. It has been found that after 10 hours of MA, the approximately 10$\mu\textrm{m}$ sized Cu-C- X nanocomposite metal powders can be produced in both compositions. Morphological characteristics and microstructural evolution of the Cu-C-X powders have shown a similar MA procedure compared to those of metal-metal system. As a result of X - ray diffraction analysis, diffraction peaks of Cu and C were broaden and peak intensities were decreased as a function of MA time. Especially, the gradual disappearance of C peaks in the X- ray spectra is proved to be due to the lower atomic scattering factor of C. The calculated Cu crystallite sizes in Cu- C- X nanocomposite metal powders by Williamson- Hall equation were about lOnm size, on the other hand, the observed ones by TEM were in the range of 10 to 30nm.

  • PDF