• Title/Summary/Keyword: M3W

Search Result 7,153, Processing Time 0.042 seconds

Microstructure evolution and effect on deuterium retention in oxide dispersion strengthened tungsten during He+ irradiation

  • Ding, Xiao-Yu;Xu, Qiu;Zhu, Xiao-yong;Luo, Lai-Ma;Huang, Jian-Jun;Yu, Bin;Gao, Xiang;Li, Jian-Gang;Wu, Yu-Cheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2860-2866
    • /
    • 2020
  • Oxide dispersion-strengthened materials W-1wt%Pr2O3 and W-1wt%La2O3 were synthesized by wet chemical method and spark plasma sintering. The field emission scanning electron microscopy (FE-SEM) analysis, XRD and Vickers microhardness measurements were conducted to characterize the samples. The irradiations were carried out with a 5 keV helium ion beam to fluences up to 5.0 × 1021 ions/m2 under 600 ℃ using the low-energy ion irradiation system. Transmission electron microscopy (TEM) study was performed to investigate the microstructural evolution in W-1wt%Pr2O3 and W-1wt%La2O3. At 1.0 × 1020 He+/m2, the average loops size of the W-1wt%Pr2O3 was 4.3 nm, much lower than W-1wt% La2O3 of 8.5 nm. However, helium bubbles were not observed throughout in both doped W materials. The effects of pre-irradiation with 1.0 × 1021 He+/m2 on trapping of injected deuterium in doped W was studied by thermal desorption spectrometry (TDS) technique using quadrupole mass spectrometer. Compared with the samples without He+ pre-irradiation, deuterium (D) retention of doped W materials increased after He+ irradiation, whose retention was unsaturated at the damage level of 1.0 × 1022D2+/m2. The present results implied that irradiation effect of He+ ions must be taken into account to evaluate the deuterium retention in fusion material applications.

Evaluation of Single and Stacked MFC Performances under Different Dissolved Oxygen Concentrations in Cathode Chamber (환원전극 DO 농도에 따른 단일 및 직렬연결 미생물연료전지 전기발생량 평가)

  • Yu, Jae-Cheul;Lee, Tae-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.249-255
    • /
    • 2009
  • The performance of microbial fuel cell (MFC) can be affected by many factors including the rate of organic matter oxidation, the electron transfer to electrode by electrochemical bacteria, proton diffusion, the concentration of electron acceptor, the rate of electron acceptor reduction and internal resistance. the performance of MFC using oxygen as electron acceptor can be influenced by oxygen concentration as limit factors in cathode compartment. Many studies have been performed to enhance electricity production from MFC. The series or parallel stacked MFC connected several MFC units can use to increase voltages and currents produced from MFCs. In this study, a single MFC (S-MFC) and a stacked MFC (ST-MFC) using acetate as electron donor and oxygen as electron acceptor were used to investigate the influence of dissolved oxygen (DO) concentrations in cathode compartment on MFC performance. The power density (W/$m^3$) of S-MFC was in order DO 5 > 3 > 7 > 9 mg/L, the maximum power density (W/$m^3$) of S-MFC was 42 W/$m^3$ at DO 5 mg/L. The power density (W/$m^3$) of ST-MFC was in order DO 5 > 7 > 9 > 3 mg/L and the maximum power density (W/$m^3$) of STMFC was 20 W/$m^3$ at DO 5 mg/L. These results suggest that the DO concentration of cathode chamber should be considered as important limit factor of MFC operation and design for stacked MFC as well as single MFC. The results of ST-MFC operation showed the voltage decrease of some MFC units by salt formation on the surface of anode, resulting in decrease total voltage of ST-MFC. Therefore, connecting MFC units in parallel might be more appropriate way than series connections to enhance power production of stacked MFC.

Workability and Compressive Strength Properties of Magnesia-Potassium Phosphate Composites for Biological Panel (생물학적 판넬용 마그네시아-인산칼륨 복합체의 유동 및 압축강도 특성)

  • Choi, Yung-Wang;Lee, Jae-Heun;Choi, Byung-Keol;Oh, Sung-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.357-364
    • /
    • 2017
  • In this paper, we investigated the influence of flow and compressive strength on the mixing ratio and water-to-binder (W/B) ratio of magnesia - potassium phosphate composites for controlling the quality of the Magnesia-Potassium Phosphate Composites(Magnesia-Potassium Phosphate Composites, MPPC) as a matrix material for biological panels. MPPC was produced at 7 W/B ratios (30, 35, 40, 45, 50, 55 and 60 vol.%) and 4 P:M ratios (1:0.5, 1:1.0, 1:2.0 and 1:3.0). The experiment results confirmed that the flow and compressive strength of MPPC depend strongly on both P:M and W/B ratios. The flow of MPPC showed that as P: M was increased, the mixing did not occur due to the shortage of the compounding amount for the reaction, because of the large density difference between P and M. The compressive strength of MPPC showed a tendency to decrease with increasing P:Mratio but there was a contradictory result with no proportional change according to W/B ratio. These results indicate that the optimum compounding ratio exists for MPPC according to W/B ratio. These results will be used as the basis data for quality control of the fluidity and compressive strength of matrix materials in terms of material in biological panel design.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

Characteristics of Rice Hulls, Sawdust, Wood Shavings and Mixture of Sawdust and Wood Shavings, and Their Usefulness According to the Pen Location for Hanwoo Cattle

  • Ahn, Gyu Chul;Jang, Sun Sik;Kwak, Hyung Jun;Lee, Sang Rak;Oh, Young Kyun;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.4
    • /
    • pp.599-605
    • /
    • 2016
  • In this study, two experiments were conducted to investigate the physicochemical characteristics (Exp. I) of bedding materials such as rice hulls (RH), sawdust (SD), wood shavings (WS) and sawdust+wood shavings (S+W; 1:1 in volume), and utilization of these beddings except RH (Exp. II) for rearing beef cattle. In Exp. I, the distribution of particle size (%) with $250{\mu}m$ and below $250{\mu}m$ was greater (p<0.05) in SD (30.4) than RH (4.4), WS (18.8) and S+W (20.1). Bulk density ($kg/m^3$) of bedding materials was directly proportional to the percentage of $250{\mu}m$ and below $250{\mu}m$ particles, 178, 46, 112, and 88 for SD, WD, S+W and RH, respectively. Water absorption rate (%) after submersion in water for 24 h was higher (p<0.05) in WS (540.2) compared to SD (270.2), S+W (368.2). The S+W had an intermediate value of the absorption rate between SD and WS, but had an outstanding durability of water absorption capacity. Moisture evaporation rate (%) for 12 h was higher (p<0.05) in WS (75.4) than SD (70.5), S+W (72.2) and RH (57.8). Average ammonia emission ($mg/m^2/h$) for 36 h was higher (p<0.05) in RH (3.15) than SD (1.70), WS (1.63), and S+W (1.73). In Exp. II, thirty six Hanwoo cows were allocated in 9 pens with one side on feed bunk side (Side A) and another side equipped with water supply (Side B) for 3 weeks with duplicated periods. Average moisture concentrations (%) of beddings were higher (p<0.05) in WS (side A, 65.7; side B, 57.9) than SD (side A, 62.5; side B, 52.2) and S+W (side A, 61.6; side B, 50.7). Regardless of types of beddings, moisture concentrations (%) of beddings within a pen were lower (p<0.05) at side B than A, implying longer period of utilization. These results suggest that using S+W would be a better choice than SD or WS alone, considering physicochemical characteristics and economics, and RH is not a suitable material as a bedding for beef cattle.

Effect of water temperature and LED lights on the behavior of rock bream (Oplegnathus fasciatus) (돌돔 (Oplegnathus fasciatus)의 수온 및 LED 광원에 대한 행동 분석)

  • HEO, Gyeom;KIM, Min-Son;SHIN, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.3
    • /
    • pp.240-245
    • /
    • 2017
  • In order to study for the growth of fish in the aquaculture industry, the behavior analysis of rock bream (Oplegnathus fasciatus) depending on the temperature and LED lights was conducted. In this study, water temperatures from 10 to 30 degrees were used. One red light (wave length: 622 nm; light power: 811 mW) and one green light (wave length: 518 nm; light power: 648 mW) were used. Behavior of the rock bream was analyzed at an average moving distance for one minutes (AMD) and a rate of movement. The mean AMD were respectively 5.3 m, 7.3 m and 3.0 m in the red LED light, green LED light and control condition. The mean rates of movement were 77%, 88% and 61% respectively in the red LED light, green LED light and control condition. The mean AMD during 24 hours were 3.1 m, 3.1 m and 3.3 m respectively in the red LED light, green LED light and control condition.

An Analysis of Wind Energy Resources using Synoptic Observational Data in North Korea (종관 바람 관측 자료를 이용한 북한 지역의 풍력자원 분석)

  • Yun, Jun-Hee;Seo, Eun-Kyoung;Park, Young-San;Kim, Hak-Seong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.225-233
    • /
    • 2010
  • Wind power density distribution over the North Korea territory was investigated by using 30-year wind observations at 27 meteorological stations. The mean annual wind power density over North Korea turned out to be 58.6W/$m^2$, which corresponds to the wind power class of 1. The wind power density shows a seasonal variation, having the highest density in spring and the lowest in summer. In particular, the wind power density in summer is about a half of that in spring. The diurnal variation of the wind power density shows that the highest and lowest densities occur in the afternoon and between 3 and 6 am in local time, respectively. The most potential wind energy generation regions are the Gaema Plateau in the central region, the northeast part of Hamgyeongbuk-do, the south coast of Pyongan-do and the west coast of Hwanghae-do. The mean annual wind power density in Changjin is 151.2W/$m^2$, which is equivalent to the class of 3. In Ryongyon, the annual mean wind power density is 102.4W/$m^2$, which belongs to the class of 2.

Influence of Silica Fume on Strength Properties of Alkali-Activated Slag Mortar (실리카 퓸이 알칼리 활성화 슬래그 모르타르의 강도특성에 미치는 영향)

  • Kim, Tae-Wan
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.305-312
    • /
    • 2013
  • This paper reports the results of an investigation into the effects of silica fume on strength properties of alkali-activated slag cement (AASC) with water-binder (W/B) ratio and replacement ratio of silica fume content. The W/B ratio varied between 0.50 and 0.60 at a constant increment of 0.05. The silica fume content varied from 0% to 50% by weight of slag. The activators was used sodium hydroxide (NaOH) and the dosage of activator was 3M. The strength development with W/B ratio has been studied at different ages of 1, 3, 7 and 28 days. For mixes of AASC mortars with varying silica fume content, the flow values were lower than the control mixes (without silica fume). The flow value was decrease as the content of silica fume increase. This is because the higher surface areas of silica fume particles increase the water requirement. The analysis of these results indicates that, increasing the silica fume content in AASC mortar also increased the compressive strength. Moreover, the strength decreases with the W/B ratios increases. This is because the particle sizes of silica fume are smaller than slag. The high compressive strength of blended slag-silica fume mortars was due to both the filler effect and the activated reaction of silica fume evidently giving the mortar matrix a denser microstructure, thereby resulting in a significant gain in strength.

Effect of Powder Mixing Process on the Characteristics of Hybrid Structure Tungsten Powders with Nano-Micro Size (나노-마이크로 크기 하이브리드 구조 텅스텐 분말특성에 미치는 분말혼합 공정의 영향)

  • Kwon, Na-Yeon;Jeong, Young-Keun;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.24 no.5
    • /
    • pp.384-388
    • /
    • 2017
  • The effect of the mixing method on the characteristics of hybrid-structure W powder with nano and micro sizes is investigated. Fine $WO_3$ powders with sizes of ${\sim}0.6{\mu}m$, prepared by ball milling for 10 h, are mixed with pure W powder with sizes of $12{\mu}m$ by various mixing process. In the case of simple mixing with ball-milled $WO_3$ and micro sized W powders, $WO_3$ particles are locally present in the form of agglomerates in the surface of large W powders, but in the case of ball milling, a relatively uniform distribution of $WO_3$ particles is exhibited. The microstructural observation reveals that the ball milled $WO_3$ powder, heat-treated at $750^{\circ}C$ for 1 h in a hydrogen atmosphere, is fine W particles of ~200 nm or less. The powder mixture prepared by simple mixing and hydrogen reduction exhibits the formation of coarse W particles with agglomeration of the micro sized W powder on the surface. Conversely, in the powder mixture fabricated by ball milling and hydrogen reduction, a uniform distribution of fine W particles forming nano-micro sized hybrid structure is observed.

Combustion Chracteristics of the Pinus rigida and Castanea savita Dried at Room Temperature (실온에서 건조된 리기다 소나무와 밤나무의 연소특성)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.86-92
    • /
    • 2010
  • One of the limitation of wood as building materials is its flammability. The purpose of this paper is to examine the combustion properties of the Pinus rigida and Castanea savita which are grown in Korea and meet the desirable characteristics for use of construction materials. The cone calorimeter (ISO 5660-1) was used to determine the heat release rate (HRR) and fire smoke index, as well as CO and $CO_2$ production and smoke obscuration. The $HRR_{mean}$ of the Castanea savita and Pinus rigida at $50\;kW/m^2$ of radiant heat flux was $70.4\;kW/m^2$ and $68.5\;kW/m^2$. Furthermore, the THR of Castanea sativata was 120.8 MJ/kg and it was higher than the THR of Pinus rigida ($81.9\;MJ/m^$). These results are depend on the bulk density of tested wood species. The Castanea savita has high $CO_{mean}$ yield and high CO/$CO_2$ yield compared with that of Pinus rigida.