• Title/Summary/Keyword: M2M Device

Search Result 2,296, Processing Time 0.027 seconds

A Study of Efficacy of Physical Water Treatment Devices for Mineral Fouling Mitigation Using Artificial Hard Water (인공 경수를 이용한 미네랄 파울링 저감에 물리적 수처리 기기들의 효과에 관한 연구)

  • Pak, Bock Choon;Kim, Sun Do;Baek, Byung Joon;Lee, Dong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1229-1238
    • /
    • 2005
  • The objective of the present study was to investigate the efficacy of physical water treatment (PWT) technologies using different catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling in a once-through flow system with mini-channel heat exchanger. Effects of flow velocity and water hardness on the effectiveness of PWT technologies were experimentally studied. The artificial water hardness varied from 5.0 to 10 mo1/m$^{3}$ as CaCO$_{3}$. For 10 mo1/m$^{3}$ solution, fouling resistance reduced by 13-40$\%$ depending on flow velocity and types of PWT devices. On the other hand, fouling resistance reduced by 21-29$\%$ depending on the PWT devices for 5 mo11m3 solutions. The PWT device using alloy of Cu and Zn as catalyst (CM2) was slightly more effective than the others. SEM photographs of scale produced from the 10 mol/m$^{3}$ solution at 1.0 m/s indicated that calcium carbonate scales without PWT devices were needle-shaped aragonite, which is sticky, dense and difficult to remove. Scales with the PWT devices showed a cluster of spherical or elliptic shape crystals. Both the heat transfer test results and SEM photographs strongly support the efficacy of PWT technologies using catalytic materials and an electronic anti-fouling device in the mitigation of mineral fouling.

Solution-Processible Blue-Light-Emitting Polymers Based on Alkoxy-Substituted Poly(spirobifluorene)

  • Lee, Jeong-Ik;Chu, Hye-Yong;Oh, Ji-Young;Do, Lee-Mi;Lee, Hyo-Young;Zyung, Tae-Hyoung;Lee, Jae-Min;Shim, Hong-Ku
    • ETRI Journal
    • /
    • v.27 no.2
    • /
    • pp.181-187
    • /
    • 2005
  • Alkoxy-substituted poly(spirobifluorene)s and their copolymers with a triphenylamine derivative have been synthesized by Ni(0)-mediated polymerization. The polymers were well soluble in common organic solvents. Pure blue-light emissions without the long wavelength emission of poly(fluorene)s have been observed in the fluorescence spectra of polymer thin films. The light emitting diodes with a device configuration of ITO/PEDT:PSS(30 nm)/polymer(60 nm)/LiF(1 nm)/Al(100 nm) have been fabricated. The electroluminescence spectra showed the blue emissions without the long wavelength emission as observed in the fluorescence spectra. The relatively poor electroluminescence quantum yield of the homopolymer (0.017% @ 20 $mA/cm^{2}$) with color coordinates of (0.16, 0.07) has been improved by the introduction of triphenylamine moiety, and the copolymer with derivative exhibited an electroluminescence quantum yield of 0.15 % at 20 $mA/cm^{2}$ with color coordinates of (0.16, 0.08). Moreover, the introduction of polar side chains to the spirobifluorene moiety enhanced the device performance and led to the quantum yields of 0.6 to 0.7 % at 20 $mA/cm^{2}$, although there was some expense of color purities.

  • PDF

Optimum Design of the Agricultural Support and Binder for Stretching Device (가중치법을 이용한 농작물 지지대 및 결속장치의 최적설계)

  • Lee, Man-Gi;Kim, Jin-Ho;Shin, Ki-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.28-33
    • /
    • 2015
  • In this study, the optimal design for the support and the binding device for the protection of crops for the maximum allowable stress of the shape necessary to minimize volume has been proposed. Optimization of the support and the binding device for the crops should be designed to support businesses in terms of profit, in part to reduce the material, and to profit from the ease and speed of working that part of the farmers. We used CATIA for the mechanical design and the ANSYS program for the structural analysis. Additionally, the optimization was performed by PIAnO with seven design variables for the binding device and three parameters for the support. The weight method using a multi-objective function was also determined by the Pareto optimal solution. The volume of the binding device in the optimum design result was found to be reduced by 16%, from $2.278e-005m^3to1.912e-005m^3$. From the result, we confirmed the effectiveness of the design method proposed as a multi-objective function optimization problem.

Low-loss Electrically Controllable Vertical Directional Couplers

  • Tran, Thang Q.;Kim, Sangin
    • Current Optics and Photonics
    • /
    • v.1 no.1
    • /
    • pp.65-72
    • /
    • 2017
  • We propose a nearly lossless, compact, electrically modulated vertical directional coupler, which is based on the controllable evanescent coupling in a previously proposed graphene-assisted total internal reflection (GA-FTIR) scheme. In the proposed device, two single-mode waveguides are separate by graphene-$SiO_2$-graphene layers. By changing the chemical potential of the graphene layers with a gate voltage, the coupling strength between the waveguides, and hence the coupling length of the directional coupler, is controlled. Therefore, for a properly chosen, fixed device length, when an input wave is launched into one of the waveguides, the ratio of their output powers can be controlled electrically. The operation of the proposed device is analyzed, with the dispersion relations calculated using a model of a one-dimensional slab waveguide. The supermodes in the coupled waveguide are calculated using the finite-element method to estimate the coupling length, realistic devices are designed, and their performance was confirmed using the finite-difference time-domain method. The designed $3{\mu}m$ by $1{\mu}m$ device achieves an insertion loss of less than 0.11 dB, and a 24-dB extinction ratio between bar and cross states. The proposed low-loss device could enable integrated modulation of a strong optical signal, without thermal buildup.

K-band MMIC Oscillator Design Using the PHEMT (PHEMT소자를 이용한 K-band MMIC 발진 설계)

  • 이지형;채연식;조희철;윤용순;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.88-91
    • /
    • 2000
  • An MMIC oscillator operating at the 24.55 GHz has been designed using 0.2 ${\mu}{\textrm}{m}$AlGaAs/InGaAs/GaAs Pseudomorphic HEMT technology. The active device used in the oscillator design has a 0.2 ${\mu}{\textrm}{m}$ gate length PHEMT with 4$\times$80 ${\mu}{\textrm}{m}$ gate width. We obtained 4.08 dB of S$_{21}$ gain and 317 mS/mm of transconductance, and extrapolated unit current gain cut-off frequency (f$_{T}$) and maximum oscillation frequency (fmax) were 62 GHz and 120 GHz, respectively. The circuit are based on a series feedback and negative resistance topology. Microstrip line open stub is used to terminating. The oscillator circuits has designed for delivering maximum power to load and conjugated matching. The simulated small signal negative resistance was 50 Ω. We obtained 1.002 of loop gain and 0.0005$^{\circ}$angle from the simulation by HP libra 6.1. The layout for oscillator is 1.2$\times$1.8 $\textrm{mm}^2$.>.

  • PDF

The Study of If Frequency Synthesizer IC Design for Digital Cellular Phone (디지털 이동통신단말기용 IF 주파수합성기 IC개발에 관한 연구)

  • 이규복;정덕진
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • In this paper, the design and simulation results of IF frequency synthesizer section has been described. We has been used 0.8 $\mu\textrm{m}$ BiCMOS device and library of the AMS. IF frequency synthesizer section has been contained IF VCO, Phase Detector, Divide_by_8, Charge Pump and Loop Filter. IF frequency synthesizer has been shown operating voltage of 2.7~3.6 V, control voltage of 0.5~2.7 V and supply current of 11 mA. The measured results have been showed good agreement with the simulation results about supply current.

  • PDF

Highly efficient phosphorescent polymer OLEDs fabricated by screen printing

  • Lee, D.H.;Choi, J.S.;Cho, S.M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.694-697
    • /
    • 2007
  • We demonstrate the use of screen printing in the fabrication of highly efficient phosphorescent polymer organic-light-emitting devices (OLEDs) based on a green-emitting $Ir(ppy)_3$ and a host polymer PVK. We incorporate PBD in the polymer host as an electron-transporting dopant and ${\alpha}-NPD$ as a hole transporting dopant. The best screen printed single-layer device exhibits very high peak luminous efficiency of 63 cd/A at a relatively high operating voltage of 17.1 V at the luminance of $650\;cd/m^2$. We observed the highest luminance of $21,000\;Cd/m^2$ at 35V. Due to the high operating voltage, despite of the high peak luminous efficiency the peak power efficiency was found to be 12.2 lm/W at the luminance of $470\;cd/m^2$ (15.9 V).

  • PDF

Effect of Counter-doping Thickness on Double-gate MOSFET Characteristics

  • George, James T.;Joseph, Saji;Mathew, Vincent
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.130-133
    • /
    • 2010
  • This paper presents a study of the influence of variation of counter doping thickness on short channel effect in symmetric double-gate (DG) nano MOSFETs. Short channel effects are estimated from the computed values of current-voltage (I-V) characteristics. Two dimensional Quantum transport equations and Poisson equations are used to compute DG MOSFET characteristics. We found that the transconductance ($g_m$) and the drain conductance ($g_d$) increase with an increase in p-type counter-doping thickness ($T_c$). Very high value of transconductance ($g_m=38\;mS/{\mu}m$) is observed at 2.2 nm channel thickness. We have established that the threshold voltage of DG MOSFETs can be tuned by selecting the thickness of counter-doping in such device.

Device characteristics of 2.5kV Gate Commutated Thyristor (2-5kV급 Gate Commutated Thyristor 소자의 제작 특성)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Seo, Kil-Soo;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.280-283
    • /
    • 2004
  • This paper discribes the design concept, fabrication process and measuring result of 2.5kV Gate Commutated Thyristor devices. Integrated gate commutated thyristors(IGCTs) is the new power semiconductor device used for high power inverter, converter, static var compensator(SVC) etc. Most of the ordinary GTOs(gate turn-off thyristors) are designed as non-punch-through(NPT) concept; i.e. the electric field is reduced to zero within the N-base region. In this paper, we propose transparent anode structure for fast turn-off characteristics. And also, to reach high breakdown voltage, we used 2-stage bevel structure. Bevel angle is very important for high power devices, such as thyristor structure devices. For cathode topology, we designed 430 cathode fingers. Each finger has designed $200{\mu}m$ width and $2600{\mu}m$ length. The breakdown voltage between cathode and anode contact of this fabricated GCT device is 2,715V.

  • PDF

The Fabrication of OTFT-OLED Array Using Ag-paste for Source and Drain Electrode (Ag 페이스트를 소스와 드레인 전극으로 사용한 OTFT-OLED 어레이 제작)

  • Ryu, Gi-Seong;Kim, Young-Bae;Song, Chung-Kun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.5
    • /
    • pp.12-18
    • /
    • 2008
  • Ag paste was employed for source and drain electrode of OTFTs and for the data metal lines of OTFT-OLED array on PC(polycarbonate) substrate. We tested two kinds of Ag-pastes such as pastes for 325 mesh and 500 mesh screen mask to examine the pattern ability and electrical performance for OTFTs. The minimum feature size was 60 ${\mu}m$ for 325 mesh screen mask and 40 ${\mu}m$ for 500 mesh screen mask. The conductivity was 60 $m{\Omega}/\square$ for 325 mesh and 133.1 $m{\Omega}/\square$ for 500 mesh. For the OTFT performance the mobility was 0.35 $cm^2/V{\cdot}sec$ and 0.12 $cm^2/V{\cdot}sec$, threshold voltage was -4.7 V and 0.9 V, respectively, and on/off current ratio was ${\sim}10^5$, for both screen masks. We applied the 500 mash Ag paste to OTFT-OLED array because of its good patterning property. The pixel was composed of two OTFTs and one capacitor and one OLED in the area of $2mm{\times}2mm$. The panel successfully worked in active mode operation even though there were a few bad pixels.