• 제목/요약/키워드: M-torsionfree module

검색결과 5건 처리시간 0.019초

A note on jordan left derivations

  • Jun, Kil-Woung;Kim, Byung-Do
    • 대한수학회보
    • /
    • 제33권2호
    • /
    • pp.221-228
    • /
    • 1996
  • Throughout, R will represent an associative ring with center Z(R). A module X is said to be n-torsionfree, where n is an integer, if nx = 0, $x \in X$ implies x = 0. An additive mapping $D : R \to X$, where X is a left R-module, will be called a Jordan left derivation if $D(a^2) = 2aD(a), a \in R$. M. Bresar and J. Vukman [1] showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative if X is a 2-torsionfree and 3-torsionfree left R-module.

  • PDF

ω-MODULES OVER COMMUTATIVE RINGS

  • Yin, Huayu;Wang, Fanggui;Zhu, Xiaosheng;Chen, Youhua
    • 대한수학회지
    • /
    • 제48권1호
    • /
    • pp.207-222
    • /
    • 2011
  • Let R be a commutative ring and let M be a GV -torsionfree R-module. Then M is said to be a $\omega$-module if $Ext_R^1$(R/J, M) = 0 for any J $\in$ GV (R), and the w-envelope of M is defined by $M_{\omega}$ = {x $\in$ E(M) | Jx $\subseteq$ M for some J $\in$ GV (R)}. In this paper, $\omega$-modules over commutative rings are considered, and the theory of $\omega$-operations is developed for arbitrary commutative rings. As applications, we give some characterizations of $\omega$-Noetherian rings and Krull rings.

WHEN IS AN ENDOMORPHISM RING P-COHERENT?

  • Mao, Lixin
    • 대한수학회지
    • /
    • 제46권1호
    • /
    • pp.99-111
    • /
    • 2009
  • A ring is called left P-coherent if every principal left ideal is finitely presented. Let M be a right R-module with the endomorphism ring S. We mainly study the P-coherence of S. It is shown that S is a left P-coherent ring if and only if the left annihilator $ann_S$(X) is a finitely generated left ideal of S for any M-cyclic submodule X of M if and only if every cyclically M-presented right R-module has an M-torsionfree preenvelope. As applications, we investigate when the endomorphism ring S is left PP or von Neumann regular.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

INDEPENDENTLY GENERATED MODULES

  • Kosan, Muhammet Tamer;Ozdin, Tufan
    • 대한수학회보
    • /
    • 제46권5호
    • /
    • pp.867-871
    • /
    • 2009
  • A module M over a ring R is said to satisfy (P) if every generating set of M contains an independent generating set. The following results are proved; (1) Let $\tau$ = ($\mathbb{T}_\tau,\;\mathbb{F}_\tau$) be a hereditary torsion theory such that $\mathbb{T}_\tau$ $\neq$ Mod-R. Then every $\tau$-torsionfree R-module satisfies (P) if and only if S = R/$\tau$(R) is a division ring. (2) Let $\mathcal{K}$ be a hereditary pre-torsion class of modules. Then every module in $\mathcal{K}$ satisfies (P) if and only if either $\mathcal{K}$ = {0} or S = R/$Soc_\mathcal{K}$(R) is a division ring, where $Soc_\mathcal{K}$(R) = $\cap${I 4\leq$ $R_R$ : R/I$\in\mathcal{K}$}.