• Title/Summary/Keyword: M-algorithm

Search Result 3,951, Processing Time 0.04 seconds

Lightweight multiple scale-patch dehazing network for real-world hazy image

  • Wang, Juan;Ding, Chang;Wu, Minghu;Liu, Yuanyuan;Chen, Guanhai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4420-4438
    • /
    • 2021
  • Image dehazing is an ill-posed problem which is far from being solved. Traditional image dehazing methods often yield mediocre effects and possess substandard processing speed, while modern deep learning methods perform best only in certain datasets. The haze removal effect when processed by said methods is unsatisfactory, meaning the generalization performance fails to meet the requirements. Concurrently, due to the limited processing speed, most dehazing algorithms cannot be employed in the industry. To alleviate said problems, a lightweight fast dehazing network based on a multiple scale-patch framework (MSP) is proposed in the present paper. Firstly, the multi-scale structure is employed as the backbone network and the multi-patch structure as the supplementary network. Dehazing through a single network causes problems, such as loss of object details and color in some image areas, the multi-patch structure was employed for MSP as an information supplement. In the algorithm image processing module, the image is segmented up and down for processed separately. Secondly, MSP generates a clear dehazing effect and significant robustness when targeting real-world homogeneous and nonhomogeneous hazy maps and different datasets. Compared with existing dehazing methods, MSP demonstrated a fast inference speed and the feasibility of real-time processing. The overall size and model parameters of the entire dehazing model are 20.75M and 6.8M, and the processing time for the single image is 0.026s. Experiments on NTIRE 2018 and NTIRE 2020 demonstrate that MSP can achieve superior performance among the state-of-the-art methods, such as PSNR, SSIM, LPIPS, and individual subjective evaluation.

Vehicle Detection Algorithm Using Super Resolution Based on Deep Residual Dense Block for Remote Sensing Images (원격 영상에서 심층 잔차 밀집 기반의 초고해상도 기법을 이용한 차량 검출 알고리즘)

  • Oh-Seol Kwon
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.124-131
    • /
    • 2023
  • Object detection techniques are increasingly used to obtain information on physical characteristics or situations of a specific area from remote images. The accuracy of object detection is decreased in remote sensing images with low resolution because the low resolution reduces the amount of detail that can be captured in an image. A single neural network is proposed to joint the super-resolution method and object detection method. The proposed method constructs a deep residual-based network to restore object features in low-resolution images. Moreover, the proposed method is used to improve the performance of object detection by jointing a single network with YOLOv5. The proposed method is experimentally tested using VEDAI data for low-resolution images. The results show that vehicle detection performance improved by 81.38% on mAP@0.5 for VISIBLE data.

Optimized KNN/SVM Algorithm for Efficent Indoor Location (효율적인 실내 측위를 위한 KNN/SVM 알고리즘)

  • Kang, Il-Woo;Sharma, Ronesh;Jeon, Seong-Min;Park, Sun;Lee, Seong-Ho;Na, Young-Hwa;Bae, Jinsoo;Jung, Min-A;Lee, Yeonwoo;Lee, Seong-Ro
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.602-605
    • /
    • 2011
  • 현재 측위에 대한 측정 대상이 점점 작아지면서, 그에 따른 정확도 까지 높아지고 있다. 실내 측위에 관한 기술은 대표적으로 단말기의 수신신호의 세기방식인 RSS(Received Signal Strength), 수신신호의 도달시간 방식 TOA(Time of Arrival), 수신 신호의 도달 시간차 방식 TDOA(Time Difference of Arrival), 수신신호의 입사각 방식인 AOA(Angle of Arrival) 등 여러 가지 기술이 활발히 진행되고 있다. 본 논문은 특수 장비를 사용하지 않고, 무선 네트워크 기반의 실내 측위 중에 정확도가 높은 Fingerprinting 방법을 택하였다. WLAN 기반 실내측위에 가장 많이 사용되는 KNN은 k개의 이웃수와 RP의 수에 따라 민감하다. 본 논문에서는 KNN 성능을 향상 시키기 위해 SVM 이용하여 SNR 데이터를 군집화를 적용한 KNN과 SVM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP를 선택한 후 선택된 RP의 신호잡음비를 SVM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과 위치 오차가 2m이내에 KNN/SVM 혼합 알고리즘이 KNN 알고리즘보다 성능이 우수하다.

A grid-line suppression technique based on the nonsubsampled contourlet transform in digital radiography

  • Namwoo Kim;Taeyoung Um;Hyun Tae Leem;Bon Tack Koo;Kyuseok Kim;Kyu Bom Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.655-668
    • /
    • 2023
  • In radiography, an antiscatter grid is a well-known device for eliminating unexpected x-ray scatter. We investigate a new stationary grid artifact suppression method based on a nonsubsampled contourlet transform (NSCT) incorporated with Gaussian band-pass filtering. The proposed method has an advantage that extracts the Moiré components while minimizing the loss of image information and apply the prior information of Moiré component positions in multi-decomposition sub-band images. We implemented the proposed algorithm and performed a simulation and an experiment to demonstrate its viability. We did this experiment using an x-ray tube (M-113T, Varian, focal spot size: 0.1 mm), a flat-panel detector (ROSE-M Sensor, Aspenstate, pixel dimension: 3032 × 3800 pixels, pixel size: 0.076 mm), and carbon graphite-interspaced grids (JPI Healthcare, 18 cm × 24 cm, line density: 103 LP/inch and 150 LP/inch, ratio: 5:1, focal distance: 65 cm). Our results indicate that the proposed method successfully suppressed grid artifacts by reducing them without either reducing the spatial resolution or causing negative side effects. Consequently, we anticipate that the proposed method can improve image acquisition in a stationary grid x-ray system as well as in extended x-ray imaging.

Soft computing based mathematical models for improved prediction of rock brittleness index

  • Abiodun I. Lawal;Minju Kim;Sangki Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.279-289
    • /
    • 2023
  • Brittleness index (BI) is an important property of rocks because it is a good index to predict rockburst. Due to its importance, several empirical and soft computing (SC) models have been proposed in the literature based on the punch penetration test (PPT) results. These models are very important as there is no clear-cut experimental means for measuring BI asides the PPT which is very costly and time consuming to perform. This study used a novel Multivariate Adaptive regression spline (MARS), M5P, and white-box ANN to predict the BI of rocks using the available data in the literature for an improved BI prediction. The rock density, uniaxial compressive strength (σc) and tensile strength (σt) were used as the input parameters into the models while the BI was the targeted output. The models were implemented in the MATLAB software. The results of the proposed models were compared with those from existing multilinear regression, linear and nonlinear particle swarm optimization (PSO) and genetic algorithm (GA) based models using similar datasets. The coefficient of determination (R2), adjusted R2 (Adj R2), root-mean squared error (RMSE) and mean absolute percentage error (MAPE) were the indices used for the comparison. The outcomes of the comparison revealed that the proposed ANN and MARS models performed better than the other models with R2 and Adj R2 values above 0.9 and least error values while the M5P gave similar performance to those of the existing models. Weight partitioning method was also used to examine the percentage contribution of model predictors to the predicted BI and tensile strength was found to have the highest influence on the predicted BI.

Development of Evacuation Algorithm from Coastal Inundation (해안침수 대피경로 알고리즘 개발)

  • Kim, Won Beom;Jung, Woo Chang;Son, Kwang Ik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.355-355
    • /
    • 2020
  • 최근 쓰나미와 해일 등 이상기후에 의한 해수면 상승 등으로 인한 해안지역의 침수가 빈번해지고 있다. 태풍 매미의 경우, 피해규모는 인명피해 130명, 이재민 4089세대 10975명, 재산피해 4조 7810억원이며 침수피해는 규모는 주택 21,015동과 농경지 37,986ha으로 나타났다. 특히 이 태풍은 경남 사천시 부근 해안에 상륙할 때의 중심기압은 950hPa로 중심부근 최대풍속 40m/s 이었으며 풍속 15 m/s 이상으로로, 태풍의 강도는 [강], 크기는 [중형]이었음에도 그 피해는 과거에 비해 크게 나타났다. 내륙과는 달리 해일 등의 피해로 인한 해안지역의 침수피해 저감기법은 월파방지 파라펫 설치 또는 침수예상 지역의 지반고를 높이는 이외에는 확실한 대책이 없는 것이 특징이라 하겠다. 따라서 해안지역 침수예방은 월파방지 파라펫과 함께 인명피해 최소화를 위해서는 충분한 선행시간을 통한 대피안내와 가장 효율적인 대피경로를 제공하는 것이 최선이라 할 수 있다. 본 연구에서는 경남 창원지역의 해수면 상승으로 인한 해안지역 침수를 모의할 수 있는 2차원 부정류 프로그램을 개발하고 매미 당시 창원지역의 침수피해 결과와 비교하여 프로그램 모의 결과를 검증하였다. 해안을 따라 다양한 높이의 월파방지 파라펫을 모의하여 시간대별 대상지역의 침수규모를 시간대별로 예측하였다. 모의결과 월파방지 파라펫 규모 별 침수규모와 이에 따른 경제적 피해규모를 산정하였으며 경제성 원칙에 따른 최적의 파라펫 규모를 제시하였다. 또한 이때 시간대별 침수범위 예측 결과를 바탕으로 시간대별 등침수선을 제시하고 일정 시간대별 등침수선을 모의결과를 이용하여 산정하였다. 도로 경사와 대피자의 연령 등을 고려한 대피소요 시간을 산정하여 침수 소요 시간과 비교하여 대피가 가능한 대피경로를 제시하는 알고리즘을 제안하였다. 본 연구결과는 기존에 알려진 대피경로와는 달리 다양한 침수저감 기법규모에 따라 다양한 대피경로를 제안할 수 있었으며 이는 추후 다양한 대피 시나리오를 제시할 수 있는 기초자료를 제공할 수 있을 것으로 기대된다.

  • PDF

A Study on Performance Improvement of Non-Profiling Based Power Analysis Attack against CRYSTALS-Dilithium (CRYSTALS-Dilithium 대상 비프로파일링 기반 전력 분석 공격 성능 개선 연구)

  • Sechang Jang;Minjong Lee;Hyoju Kang;Jaecheol Ha
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • The National Institute of Standards and Technology (NIST), which is working on the Post-Quantum Cryptography (PQC) standardization project, announced four algorithms that have been finalized for standardization. In this paper, we demonstrate through experiments that private keys can be exposed by Correlation Power Analysis (CPA) and Differential Deep Learning Analysis (DDLA) attacks on polynomial coefficient-wise multiplication algorithms that operate in the process of generating signatures using CRYSTALS-Dilithium algorithm. As a result of the experiment on ARM-Cortex-M4, we succeeded in recovering the private key coefficient using CPA or DDLA attacks. In particular, when StandardScaler preprocessing and continuous wavelet transform applied power traces were used in the DDLA attack, the minimum number of power traces required for attacks is reduced and the Normalized Maximum Margines (NMM) value increased by about 3 times. Conseqently, the proposed methods significantly improves the attack performance.

Analytical study on cable shape and its lateral and vertical sags for earth-anchored suspension bridges with spatial cables

  • Gen-min Tian;Wen-ming Zhang;Jia-qi Chang;Zhao Liu
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.255-272
    • /
    • 2023
  • Spatial cable systems can provide more transverse stiffness and torsional stiffness without sacrificing the vertical bearing capacity compared with conventional vertical cable systems, which is quite lucrative for long-span earth-anchored suspension bridges' development. Higher economy highlights the importance of refined form-finding analysis. Meanwhile, the internal connection between the lateral and vertical sags has not yet been specified. Given this, an analytic algorithm of form-finding for the earth-anchored suspension bridge with spatial cables is proposed in this paper. Through the geometric compatibility condition and mechanical equilibrium condition, the expressions for cable segment, the recurrence relationship between catenary parameters and control equations of spatial cable are established. Additionally, the nonlinear general reduced gradient method is introduced into fast and high-precision numerical analysis. Furthermore, the analytic expression of the lateral and vertical sags is deduced and discussed. This is very significant for the space design above the bridge deck and the optimization of the sag-to-span ratio in the preliminary design stage of the bridge. Finally, the proposed method is verified with the aid of two examples, one being an operational self-anchored suspension bridge (with spatial cables and a 260 m main span), and the other being an earth-anchored suspension bridge under design (with spatial cables and a 500 m main span). The necessity of an iterative calculation for hanger tensions on earth-anchored suspension bridges is confirmed. It is further concluded that the main cable and their connected hangers are in very close inclined planes.

Distance Estimation Based on RSSI and RBF Neural Network for Location-Based Service (위치 서비스를 위한 RBF 신경회로망과 RSSI 기반의 거리추정)

  • Byeong-Ro Lee;Ju-Won Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.265-271
    • /
    • 2023
  • Recently, location information services are gradually expanding due to the development of information and communication technology. RSSI is widely used to extract indoor and outdoor locations. The indoor and outdoor location estimation methods using RSSI are less accurate due to the influence of radio wave paths, interference, and surrounding wireless devices. In order to improve this problem, a distance estimation method that takes into account the wireless propagation environment is necessary. Therefore, in this study, we propose a distance estimation algorithm that takes into account the radio wave environment. The proposed method estimates the distance by learning RSSI input and output considering the RBF neural network and the propagation environment. To evaluate the performance of the proposed method, the performance of estimating the location of the receiver within a range of up to 55[m] using a BLE beacon transmitter and receiver was compared with the average filter and Kalman filter. As a result, the distance estimation accuracy of the proposed method was 6.7 times higher than that of the average filter and Kalman filter. As shown in the results of this performance evaluation, if the method of this study is applied to location services, more accurate location estimation will be possible.

Detecting Greenhouses from the Planetscope Satellite Imagery Using the YOLO Algorithm (YOLO 알고리즘을 활용한 Planetscope 위성영상 기반 비닐하우스 탐지)

  • Seongsu KIM;Youn-In CHUNG;Yun-Jae CHOUNG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.27-39
    • /
    • 2023
  • Detecting greenhouses from the remote sensing datasets is useful in identifying the illegal agricultural facilities and predicting the agricultural output of the greenhouses. This research proposed a methodology for automatically detecting greenhouses from a given Planetscope satellite imagery acquired in the areas of Gimje City using the deep learning technique through a series of steps. First, multiple training images with a fixed size that contain the greenhouse features were generated from the five training Planetscope satellite imagery. Next, the YOLO(You Only Look Once) model was trained using the generated training images. Finally, the greenhouse features were detected from the input Planetscope satellite image. Statistical results showed that the 76.4% of the greenhouse features were detected from the input Planetscope satellite imagery by using the trained YOLO model. In future research, the high-resolution satellite imagery with a spatial resolution less than 1m should be used to detect more greenhouse features.