• Title/Summary/Keyword: M-ICP

Search Result 530, Processing Time 0.035 seconds

Discrimination of Ginseng Habitat by Using Instrumental Analysis Techniques

  • Sohn H. J.;Lee S. K.;Cho B. G.;Kim S. J.;Lee N. Y.;Choi D. S.;Jeong M. S.;Bae H. R.;Yang J. W.
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.238-252
    • /
    • 2002
  • In order to screen out indicators for the discrimination of ginseng habitat, some physical and chemical characteristics of Korean red ginsengs (94 kinds) and Chinese red ginsengs (50 kinds) were analyzed by using a rheometer, an electronic nose system, a combined technique of solid phase micro-extraction (SPME) and gas chromatograph equipped with an electron capture detector (GC/ECD), an X-ray fluorescence spectrometer (XRF), an inductively coupled plasma mass spectrometer (ICP/MS), a near infrared spectrometer (NIRs) and high performance liquid chromatography equipped with evaporative light scattering detector (HPLC/ELSD). The results are summarized as follows: (i) The rhizome strengths of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. (ii) The electronic nose patterns of Korean red ginsengs were significantly different from those of Chinese red ginsengs. (iii) Some unidentified peaks were detected not in the headspace of Korean red ginsengs but in the headspace of Chinese red ginsengs when the headspace volatiles prepared by the SPME technique were analyzed by GC/ECD. (iv) Either the content ratios of K to Ca or Mn to Fe were significantly different between Korean red ginsengs and Chinese red ginsengs. (v) The reflectance ratios of NIRs wavenumbers such as $904\;cm^{-1}\;to\;1088\;cm^{-1}$ for Korean red ginsengs were significantly different from those for Chinese red ginsengs. (vi) The content ratios of ginsenoside-Rg to ginsenoside-Re of Korean red ginsengs were significantly higher than those of Chinese red ginsengs. These results indicate that the rhizome strength, the electronic nose pattern, the occurrence of ECD-sensitive headspace volatile components, the content ratios of K to Ca and Mn to Fe, the NIRs pattern and the content ratio of ginsenoside-Rg to -Re may be indicators for the discrimination of ginseng habitat.

  • PDF

Stabilization of Arsenic in Paddy Soils Using Stabilizers (논토양 내 비소 불용화에 대한 안정화물질의 처리 효과)

  • Kang, Min Woo;Oh, Sejin;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • BACKGROUND: Soil contamination of As is a very sensitive environmental issue due to its adverse impact on human health and different characteristics with other heavy metals. With public awareness of As poisoning, there has been growing interest in developing guideline and remediation technologies for As-contaminated soil. The objective of this research was to evaluate the effectiveness of stabilizing amendments and soil dressing methods on the mobility of As in the contaminated rice paddy soils nearby mining area. METHODS AND RESULTS: Different amendments were mixed with surface and subsurface contaminated soils at a ratio of 3% (w/w) and monitored for five months. Three different extractants including 0.01M $CaCl_2$, TCLP, and PBET were used to examine As bioavailability in the soil and the concentration of As in rice grain was also measured with an inductively coupled plasma (ICP) spectroscopy. The results showed that all amendment treatments decreased As concentration compared to the control. Especially, coal mine drainage sludge (CMDS) treatment showed the highest efficiency of decreasing As concentration in the soil and rice grain. The values of Pearson correlation (r) between As concentrations in the soil and rice grain were 0.782, 0.753, and 0.678 for $CaCl_2$, TCLP, and PBET methods, respectively. Especially, $CaCl_2$ method was highly correlated between As concentrations of the soil and soil solution (r=0.719), followed by TCLP (r=0.706), PBET (r=0.561) methods. CONCLUSION: Stabilizing amendments can effectively reduce available As concentration in the soils as well as soil solution, and thereby potentially mitigating risks of crop contamination by As.

Crucible Cover of Multilayer Porous Hemisphere for Cd Distillation

  • Kwon, S.W.;Lee, Y.S.;Jung, J.H.;Kim, S.H.;Lee, S.J.;Hur, J.M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.05a
    • /
    • pp.57-57
    • /
    • 2018
  • The electrorefining process is generally composed of two recovery steps in pyroprocessing - the deposit of uranium onto a solid cathode and the recovery of the remaining uranium and TRU elements simultaneously by a liquid cadmium cathode. The liquid cathode processing is necessary to separate cadmium from the actinide elements since the actinide deposits are dissolved or precipitated in a liquid cathode. Distillation process was employed for the cathode processing. It is very important to avoid a splattering of cadmium during evaporation due to the high vapor pressure. In this study, a multi-layer porous round cover was proposed and examined to develop a splatter shield for the Cd distillation crucible. Cadmium vapor can be released through the holes of the shield, whereas liquid drops can be collected in the multiple hemisphere. The collected drops flow on the round surface of the cover and flow down into the crucible. The crucible cover was fabricated and tested in the Cd distiller. The cover was made with three stainless steel round plates with a diameter of 33.50 mm. The distance between the hemispheres and the diameter of the holes are 10 and 1 mm, respectively. About 40 grams of Cd and about 4 grams of Bi was distilled at a reduced pressure for two hours at $470^{\circ}C$. After the Cd distillation experiment, cadmium was not detected and more than 90 % of Bi remained in the ICP-OES analysis. Therefore the crucible cover can be a candidate for the splatter shield of the Cd distillation crucible. Further development of the crucible cover is necessary for the decision of the optimum cover geometry and the operating conditions of the Cd distiller.

  • PDF

Effect of Zn/Al Cation Ratio on Corrosion Inhibition Capabilities of Hydrotalcites Containing Benzoate Against Carbon Steel

  • Thu Thuy, Pham;Anh Son, Nguyen;Thu Thuy, Thai;Gia Vu, Pham;Ngoc Bach, Ta;Thuy Duong, Nguyen;To Thi Xuan, Hang
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.434-444
    • /
    • 2022
  • Corrosion inhibitors based on Zn-Al hydrotalcites containing benzoate (ZnAlHB) with different molar ratios of Zn/Al were prepared with a co-precipitation process. Compositions and structures of the resulting hydrotalcites were studied with suitable spectroscopic methods such as inductively coupled plasma mass spectrometry (ICP-MS), ultraviolet-visible spectrophotometry (UV-Vis), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and surface zeta potential measurements, respectively. Results of physico-chemical studies showed that crystallite sizes, compositions of products, and surface electrical properties were significantly changed when the molar ratio of Zn/Al was increased. The release of benzoate from hydrotalcites also differed slightly among samples. Anticorrosion abilities of hydrotalcites intercalated with benzoate at a concentration of 3 g/L on carbon steel were analyzed using electrochemical impedance spectroscopy (EIS), polarization curve, energy-dispersive X-ray spectroscopy (EDX), and SEM. Corrosion inhibition abilities of benzoate modified hydrotalcites in 0.1 M NaCl showed an upward trend with increasing Zn/Al ratio. The reason for the dependence of corrosion resistance on the Zn/Al ratio was discussed, including changes in the microstructure of hydrotalcites such as crystal size, density, uniformity, and formation of ZnO.

Effective removal of non-radioactive and radioactive cesium from wastewater generated by washing treatment of contaminated steel ash

  • P. Sopapan;U. Lamdab;T. Akharawutchayanon;S. Issarapanacheewin;K. Yubonmhat;W. Silpradit;W. Katekaew;N. Prasertchiewchan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.516-522
    • /
    • 2023
  • The co-precipitation process plays a key role in the decontamination of radionuclides from low and intermediate levels of liquid waste. For that reason, the removal of Cs ions from waste solution by the co-precipitation method was carried out. A simulated liquid waste (133Cs) was prepared from a 0.1 M CsCl solution, while wastewater generated by washing steel ash served as a representative of radioactive cesium solution (137Cs). By co-precipitation, potassium ferrocyanide was applied for the adsorption of Cs ions, while nickel nitrate and iron sulfate were selected for supporting the precipitation. The amount of residual Cs ions in the CsCl solution after precipitation and filtration was determined by ICP-OES, while the radioactivity of 137Cs was measured using a gamma-ray spectrometer. After cesium removal, the amount of cesium appearing in both XRD and SEM-EDS was analyzed. The removal efficiency of 133Cs was 60.21% and 51.86% for nickel nitrate and iron sulfate, respectively. For the ash-washing solution, the removal efficiency of 137Cs was revealed to be more than 99.91% by both chemical agents. This implied that the co-precipitation process is an excellent strategy for the effective removal of radioactive cesium in waste solution treatment.

Experimental Study on the Geochemical and Mineralogical Alterations in a Supercritical CO2-Groundwater-Zeolite Sample Reaction System (초임계 이산화탄소-지하수-제올라이트 시료 반응계에서의 지화학적 및 광물학적 변화에 관한 실험적 연구)

  • Park, Eundoo;Wang, Sookyun;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.421-430
    • /
    • 2014
  • In this study, a series of autoclave experiments were conducted in order to investigate the geochemical and mineralogical effects of carbon dioxide on deep subsurface environments. High pressure and temperature conditions of $50^{\circ}C$ and 100 bar, which are representative environments for geological $CO_2$ sequestration, were created in stainless-steel autoclaves for simulating the interactions in the $scCO_2$-groundwater-mineral reaction system. Zeolite, a widespread mineral in Pohang Basin where many researches have been focused as a candidate for geological $CO_2$ sequestration, and groundwater sampled from an 800 m depth aquifer were applied in the experiments. Geochemical and mineralogical alterations after 30 days of $scCO_2$-groundwater-zeolite sample reactions were quantitatively examined by XRD, XRF, and ICP-OES investigations. The results suggested that dissolution of zeolite sample was enhanced under the acidic condition induced by dissolution of $scCO_2$. As the cation concentrations released from zeolite sample increase, $H^+$ in groundwater was consumed and pH increases up to 10.35 after 10 days of reaction. While cation concentrations showed increasing trends in groundwater due to dissolution of the zeolite sample, Si concentrations decreased due to precipitation of amorphous silicate, and Ca concentrations decreased due to cation exchange and re-precipitation of calcite. Through the reaction experiments, it was observed that introduction of $CO_2$ could make alterations in dissolution characteristics of minerals, chemical compositions and properties of groundwater, and mineral compositions of aquifer materials. Results also showed that geochemical reactions such as cation exchange or dissolution/precipitation of minerals could play an important role to affect physical and chemical characteristics of geologic formations and groundwater.

A Study on Cation Extraction and Impurity Separation in Slag (슬래그 내 양이온 추출 및 불순물 분리 연구)

  • Lee, Ye Hwan;Kang, Hyerin;Jang, Younghee;Lee, Si-Jin;Kim, Sung Su
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.311-315
    • /
    • 2019
  • The cation extraction and impurity separation were studied in order to investigate the recyclability of a slag produced from the steel refinery industry. Two types of slag (Slag-A, B) were collected and characterized in this study. The initial characterization by X-ray diffraction (XRD) and X-ray fluorescence (XRF) confirmed the existence of various kinds of ions in the slag such as Ca2+ (30 ~ 40%), Fe3+ (20 ~ 30%), Si4+ (15%), Al3+ (10%), Mn2+ (7%), and Mg2+ (3 ~ 5%). Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis on the extracted slag using 2 M HCl as a solvent indicated that a higher concentration of Ca2+ was extracted as the S/L ratio was increased. The Ca2+ extraction concentration were found to be 8,940 mg L-1 (Slag-A) and 10,690 (Slag-B) mg L-1 when the S/L ratio for Ca2+ extraction was 0.1. However, the extract was strongly acidic ( < pH 1) at 0.1 S/L. Also the other ions (impurities) were extracted simultaneously in addition to Ca2+. To increase the purity of Ca2+ in order to transform the slag to a high value resource, a pH-swing was conducted. The impurities tended to precipitate at higher rate as the pH was increased. Notably, the Ca2+ rapidly precipitated above a certain pH and at a pH of 10.5, while the selectivity of Ca2+ was over 99%. It is expected that the aqueous solution in which high contents of Ca2+ was selectively dissolved in this study would be suitable for the carbonation process for reducing CO2 and for the production of calcium carbonate.

Trace Elements Analysis and Source Assessment of School Dust in Daegu, Korea (대구지역 학교먼지에 함유된 미량원소성분 분석과 오염원 평가)

  • Song, Hee-Bong;Do, Hwa-Seok;Lee, Myoung-Sook;Shin, Dong-Chan;Yoon, Ho-Suk;Kwak, Jin-Hee;Jung, Cheol-Su;Kang, Jae-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1390-1399
    • /
    • 2007
  • Samples of 45 school dust were collected in Daegu in January 2007, were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after an acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that dust from playground were influenced by natural sources, while dust from classroom were influenced by urban anthropogenic sources. The measured values were remarkably higher in components from natural sources than in components from urban anthropogenic sources. Dust from classroom are highly concentrated than those from playground. Concentrations of dust in urban area are similar to those of dust in rural area and there was no significant difference in concentrations between classroom with playground soil and classroom with play-ground grass. Compared with other cities in Korea, concentrations of heavy metals in Daegu city were higher in classroom and lower in playground than those of heavy metals in other cities. Dust from classroom contained lower concentrations of trace elements than those from street in Daegu. Results of pollution indices of heavy metals indicated that playground was not contaminated with heavy metals and classroom was considered to be highly contaminated. No appreciable differences in playground were found between urban and rural areas but in case of classroom pollution, heavy metal concentrations were a little bit higher in urban areas than in rural areas. The correlation analysis among trace elements indicated that components in playground were significantly correlated, while components in classroom were less correlated. Trace element components of classroom dust were not significantly affected by those of playground dust.

Trace element Analysis and Source Assessment of Apartment Parking Lot Dust in Daegu, Korea (공동주택 주차장의 축적먼지 중 미량원소성분 분석과 오염원 평가)

  • Bae, Gun-Ho;Jung, Cheol-Su;Park, Kyu-Tae;Lee, Myoung-Sook;Shin, Dong-Chan;Kim, Yong-Hye;Yoon, Min-Hye;Han, Young-Jin;Choi, Hyuek;Baek, Sung-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.756-766
    • /
    • 2011
  • In order to investigate the degree of apartment parking lot dust contamination, total 72 samples of parking lot dust (36 from ground parking lots and 36 from the underground parking lots) were collected in Daegu city from the end of March to the early June 2010. The dust samples were sieved below $100{\mu}m$, and analysed by ICP for 14 elements after an acid extraction. Results obtained from the source assessment of trace element using enrichment factor showed that Fe, K, Mg, Mn, Na and V were influenced by natural sources, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources in both the ground parking lot and the underground parking lot. And results showed that Ca were influenced by natural sources in the ground parking lot, but influenced by anthropogenic sources in the underground parking lot. The measured values were remarkably higher in components from natural sources than in components from anthropogenic sources. Underground parking lot dust was more affected by anthropogenic sources and contaminated compared with the ground parking lot dust. Pollution index of heavy metals revealed that underground parking lot dust was 5.5 times more contaminated with heavy metal components than the ground parking lot dust. The results of correlation analysis among trace elements indicated that components in the ground parking lot were more correlated than those in the underground parking lot, and especially more correlated with natural sources-natural sources. Analysis for correlations between components and influencing factors in the underground parking lot showed that concentrations of heavy metals were higher with smaller number of parking spaces and no ventilation system, and older apartments in last paint and cleaning had relatively higher contents of heavy metals than those of recently painted and cleaned.

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.