• Title/Summary/Keyword: M-H plot

Search Result 279, Processing Time 0.028 seconds

Production and Characterization of Phenylalanine Ammonia-lyase from Rhodotorula aurantiaca K-505

  • Cho, Dae-Haeng;Chae, Hee-Jeong;Kim, Eui-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.4
    • /
    • pp.354-359
    • /
    • 1997
  • Optimal cultivation conditions for the production of phenylalanine ammonia-lyase(PAL) from Rhodotorula aurantiaca K-505 were selected, and the kinetic parameters of the produced PAL were determined. The most suitable carbon and nitrogen sources were glucose and tryptone, respectively. The strain expressed PAL constituttively when using the optimized semi-complex media. High cell density culture could be critical for maximal production of PAl since the PAL ynthesis was growth associated. maximum PAL activity was observed at initial pH 6.0. although the ll growth was not markedly affected by temperature between 22 and 28$^{\circ}C$, the cells yielded the maximum PAL activity when cultivated at 22$^{\circ}C$. The maximum activity for deamination of L-phenylalnine to trans-cinnamic acid was observed around pH 8.8. The PAL activity gave the maximum at 45$^{\circ}C$, and greatly decreased at higher than 5$0^{\circ}C$. Activation energy({TEX}$E_{a}${/TEX}) calculated from Arrhenius equation was 6.28 kcal/mol in the range of 22$^{\circ}C$ to 4$0^{\circ}C$. A oolf plot showed that the enzyme reaction follows Michaelis-Menten equation, whose {TEX}$K_{M}${/TEX} and {TEX}$V_{max}${/TEX} values were 4.65$\times${TEX}$10^{-3}${/TEX} M and 0.89$\mu$ mol/mg-min respectively.

  • PDF

Electrical characteristics of carbon nitride capacitor for micro-humidity sensors (마이크로 습도센서를 위한 질화탄소막 캐패시터의 전기적 특성)

  • Kim, Sung-Yeop;Lee, Ji-Gong;Chang, Choong-Won;Lee, Sung-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.97-103
    • /
    • 2007
  • Crystallized carbon nitride film that has many stable physical and/or chemical properties has been expected potentially by a new electrical material. However, one of the most significant problems degrading the quality of carbon nitride films is an existence of N-H and C-H bonds from the deposition environment. The possibility of these reactions with hydroxyl group in carbon nitride films, caused by a hydrogen attack, was suggested and proved in our previous reports that this undesired effect could be applied for fabricating micro-humidity sensors. In this study, MIS capacitor and MIM capacitor with $5{\mu}m{\times}5{\mu}m$ meshes were fabricated. As an insulator, carbon nitride film was deposited on a $Si_{3}N_{4}/SiO_{2}/Si$ substrate using reactive magnetron sputtering system, and its dielectric constant, C-V characteristics and humidity sensing properties were investigated. The fabricated humidity sensors showed a linearity in the humidity range of 0 %RH to 80 %RH. These results reveal that MIS and MIM $CN_{X}$ capacitive humidity sensors can be used for Si based micro-humidity sensors.

Correlation of Rates of Solvolysis of Phenyl Chlorodithioformate

  • An, Sun-Kyoung;Yang, Jin-Soon;Cho, Jun-Mi;Yang, Ki-yull;Lee, Jong-Pal;Bentley, T.W.;Lee, Ik-choon;Koo, In-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.10
    • /
    • pp.1445-1450
    • /
    • 2002
  • Solvolytic rate constants at 25 $^{\circ}C$ are reported for solvolysis of chlorodithioformate (1) in binary mixtures of water with acetone, ethanol, methanol, methanol-d, 50%methanol-d/50%D2O, and 2,2,2-trifluroethanol (TFE), and also in TFE-ethanol mixtures. The Grunwald-Winstein plot shows that the three aqueous mixtures exhibit dispersions into separate line. The correlation is improved only slightly by additional parameters NT for solvent nucleophilicity and/or I for aromatic ring parameter. Rate ratios in solvents of the same $Y_cl$ value, having different nucleophilicity provide measures of the minimum extent of nucleophilic solvent assistance, and the value of 3.35 for $[$k_{40EW}$/$k_97TFE$]_Y$ (EW = ethanol-water), is consistent with an essentially SN1 reaction mechanism. This study has shown that the magnitude of l, m and h values associated with a change of solvent composition is able to predict the SN1 reaction mechanism. log(k/$k_o$) = mY + lN + hI

Characterization of Human ${\beta}-Carotene$ 15,15-dioxygenase Isolated from Recombinant Escherichia coli (유전자 재조합 기술에 의하여 제조된 인간 ${\beta}-carotene$ 15,15'-dioxygenase의 반응특성)

  • Shin, Won-Phil;Chang, Pahn-Shick
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.440-447
    • /
    • 2004
  • Characteristics of human ${\beta}-carotene$ 15,15'-dioxygenase isolated by recombinant DNA technology was elucidated. Optimal pH and temperature were 9.0 and $40^{\circ}C$, respectively. Enzyme activity was temperature-sensitive. Enzyme was stable at pH 6.0-9.0 for 24 hr and under $5^{\circ}C$. Half-life of enzyme at $35^{\circ}C$ was 40 min. Crude preparations of enzyme were inhibited by ferrous ion-chelating agent and sulfhydryl-binding agent. GSH offsets inhibitory effect of PCMB. With increasing substrate concentrations, enzyme activity gave typical Michaelis-Menten curve, Based on Hanes-Woolf plot of data, $K_{m}\;and\;V_{max$ were $3.39{\times}10^{6}\;M\;and\;1.2\;pmol/mg$ protein/min, respectively.

Acid Etching of Sapphire Substrate for Hetero-Epitaxial Growth (Hetero-Epi막 성장용 사파이어 기판의 산에칭)

  • Kim, Hyang Sook;Hwang, Jin Soo;Chong, Paul Joe
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.1
    • /
    • pp.1-6
    • /
    • 1995
  • The surface of a sapphire substrate used for hetero-epitaxy was chemically polished in a mixture of $H_3PO_4\;and\;H_2SO_4$ solution. The extent of etching for various crystal orientations was found to be dependent on the etching time at $315{\pm}2^{\circ}C$ and at the composition of $H_2SO_4 : H_3PO_4$=3 : 1. In addition, the etching rates of the substrates were investigated in the mixture of $H_2SO_4 : H_3PO_4$=3 : 1 by volume and in the temperature range of 280~320$^{\circ}C$. From the plot of log R against 1/T, the activation penergy ($(E_a)$) was found to be in the order of $({\bar1}012) > (10{\bar1}0) > (11{\bar2}0) > (0001)$ plane. After removing the surface layers of the sapphire with (0001), $({\bar1}012),\;(10{\bar1}0)\;and\;(11{\bar2}0)$ plane by a thickness of 64.6, 46.5, 16.2 and 5.1 ${\mu}m$, respectively, the morphology of the resulting surface was observed by SEM.

  • PDF

Catalytic properties of wheat phytase that favorably degrades long-chain inorganic polyphosphate

  • An, Jeongmin;Cho, Jaiesoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Objective: This study was conducted to determine catalytic properties of wheat phytase with exopolyphosphatase activity toward medium-chain and long-chain inorganic polyphosphate (polyP) substrates for comparative purpose. Methods: Exopolyphosphatase assay of wheat phytase toward polyP75 (medium-chain polyP with average 75 phosphate residues) and polyP1150 (long-chain polyP with average 1150 phosphate residues) was performed at pH 5.2 and pH 7.5. Its activity toward these substrates was investigated in the presence of Mg2+, Ni2+, Co2+, Mn2+, or ethylenediaminetetraacetic acid (EDTA). Michaelis constant (Km) and maximum reaction velocity (Vmax) were determined from Lineweaver-Burk plot with polyP75 or polyP1150. Monophosphate esterase activity toward p-nitrophenyl phosphate (pNPP) was assayed in the presence of polyP75 or polyP1150. Results: Wheat phytase dephosphorylated polyP75 and polyP1150 at pH 7.5 more effectively than that at pH 5.2. Its exopolyphosphatase activity toward polyP75 at pH 5.2 was 1.4-fold higher than that toward polyP1150 whereas its activity toward polyP75 at pH 7.5 was 1.4-fold lower than that toward polyP1150. Regarding enzyme kinetics, Km for polyP75 was 1.4-fold lower than that for polyP1150 while Vmax for polyP1150 was 2-fold higher than that for polyP75. The presence of Mg2+, Ni2+, Co2+, Mn2+, or EDTA (1 or 5 mM) exhibited no inhibitory effect on its activity toward polyP75. Its activity toward polyP1150 was inhibited by 1 mM of Ni2+ or Co2+ and 5 mM of Ni2+, Co2+, or Mg2+. Ni2+ inhibited its activity toward polyP1150 the most strongly among tested additives. Both polyP75 and polyP1150 inhibited the monophosphate esterase activity of wheat phytase toward pNPP in a dose-dependent manner. Conclusion: Wheat phytase with an unexpected exopolyphosphatase activity has potential as a therapeutic tool and a next-generational feed additive for controlling long-chain polyP-induced inappropriate inflammation from Campylobacter jejuni and Salmonella typhimurium infection in public health and animal husbandry.

Effect of Red Pepper Canopy Coverages on Soil Loss and Runoff from Sloped Land with Different Transplanting Dates (경사지에서 고추 정식시기에 따른 토양유실과 유출수에 대한 식생피복 효과)

  • Cho, H.R.;Ha, S.K.;Hyun, S.H.;Hur, S.O.;Han, K.H.;Hong, S.Y.;Jeon, S.H.;Kim, E.J.;Lee, D.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.260-267
    • /
    • 2010
  • As sloped farmland is subject to runoff and soil erosion and consequently require appropriate vegetative coverage to conserve soil and water, a field study was carried out to evaluate the impact of crop canopy coverage on soil loss and runoff from the experimental plot with three different textural types (clay loam, loam, and sandy loam). The runoff and soil loss were examined at lysimeters with 15% slope, 5 m in length, and 2 m in width for five months from May to September 2009 in Suwon ($37^{\circ}$ 16' 42.67" N, $126^{\circ}$ 59' 0.11" E). Red pepper (Capsicum annum L. cv. Daechon) seedlings were transplanted on three different dates, May 4 (RP1), 15 (RP2), and 25 (RP3) to check vegetation coverage. During the experimental period, the vegetation coverage and plant height were measured at 7 day-intervals and then the 'canopy cover subfactor' (an inverse of vegetation cover) was subsequently calculated. After each rainfall ceased, the amounts of soil loss and runoff were measured from each plot. Under rainfall events >100 mm, both soil loss and runoff ratio increased with increasing canopy cover subfactor ($R^2$=0.35, p<0.01, $R^2$=0.09, p<0.1), indicating that as vegetation cover increases, the amount of soil loss and runoff reduces. However, the soil loss and runoff were depending on the soil texture and rainfall intensity (i. e., $EI_{30}$). The red pepper canopy cover subfactor was more highly correlated with soil loss in clay loam ($R^2$=0.83, p<0.001) than in sandy loam ($R^2$=0.48, p<0.05) and loam ($R^2$=0.43, p<0.1) plots. However, the runoff ratio was effectively mitigated by the canopy coverage under the rainfall only with $EI_{30}$<1000 MJ mm $ha^{-1}hr^{-1}$ ($R^2$=0.34, p<0.05). Therefore, this result suggested that soil loss from the red pepper field could be reduced by adjusting seedling transplanting dates, but it was also affected by the various soil textures and $EI_{30}$.

Aroma Pattern Analysis of Hanwoo Beef (M. longissimus) using Electronic Nose during Refrigerated Storage (전자 코를 이용한 한우 등심육의 냉장저장 중 향기 패턴 분석)

  • Lee Sung Ki;Kim Ju Yong;Kim Yong Sun
    • Food Science of Animal Resources
    • /
    • v.24 no.3
    • /
    • pp.260-265
    • /
    • 2004
  • This study was carried out to investigate aroma patterns of Hanwoo (Korean cattle) beef using electronic nose during refrigerated storage, and to compare these results with chemical quality (pH, TBARS). The M. longissimus muscle from Hanwoo carcasses after 24 hrs postmortem was obtained and stored at 5${\pm}$1$^{\circ}C$ for 7 days. Sensitivity (dR/RO) values among electronic nose data were changed differently during refrigerated storage, and showed significant difference on the 7th day of storage (p<0.01). The dR/RO from SY/G, SY/AA, SY/Gh, SY/gCTl, SY/gCT decreased but those from SY/LG, T30/1, P10/1, P10/2, P40/1, T70/2, PA2 increased during storage for 7 days. Mapping these data using PCA (principal component analysis) showed that the 1st day data were present in the middle of the right side, the 3rd day data were present in bottom part of this area and the 7th day data spread out more widely on the left side. In case of DFA (discriminant factor analysis), the flock clustered round and located in different side clearly comparing with PCA plot. In analysis of correlation coefficients among electronic nose data and chemical quality data, there was significant correlation among sensor data (p<0.001). But pH and TBARS were not significantly correlated with electronic nose data. Consequently, PCA and DFA plot by electronic nose data showed difference during refrigerated storage and there were significant correlations among sensors. Therefore it will be possible to detect separate aroma patterns of Hanwoo beef using electronic nose.

Kinetic Characterization of an Iron-sulfur Containing Enzyme, L-serine Dehydratase from Mycobacterium tuberculosis H37Rv (Mycobacterium tuberculosis H37Rv로부터 유래된 철-황 함유 효소인 L-세린 탈수화효소의 동력학적 특성)

  • Han, Yu Jeong;Lee, Ki Seog
    • Journal of Life Science
    • /
    • v.28 no.3
    • /
    • pp.351-356
    • /
    • 2018
  • L-Serine dehydratase (LSD) is an iron-sulfur containing enzyme that catalyzes the conversion of L-serine to pyruvate and ammonia. Among the bacterial amino acid dehydratases, it appears that only the L-serine specific enzymes utilize an iron-sulfur cluster at their catalytic site. Moreover, bacterial LSDs are classified into four types based on structural characteristics and domain arrangement. To date, only the LSD enzymes from a few bacterial strains have been studied, but more detailed investigations are required to understand the catalytic mechanism of various bacterial LSDs. In this study, LSD type II from Mycobacterium tuberculosis (MtLSD) H37Rv was expressed and purified to elucidate the biochemical and catalytic properties using the enzyme kinetic method. The L-serine saturation curve of MtLSD exhibited a typically sigmoid character, indicating an allosteric cooperativity. The values of $K_m$ and $k_{cat}$ were estimated to be $59.35{\pm}1.23mM$ and $18.12{\pm}0.20s^{-1}$, respectively. Moreover, the plot of initial velocity versus D-serine concentration at fixed L-serine concentrations showed a non-linear hyperbola decay shape and exhibited a competitive inhibition for D-serine with an apparent $K_i$ value of $30.46{\pm}5.93mM$ and with no change in the $k_{cat}$ value. These results provide insightful biochemical information regarding the catalytic properties and the substrate specificity of MtLSD.

Bioelectrical Impedance Analysis at Popliteal Regions of Human Body using BIMS

  • Kim, J.H.;Kim, S.S.;Kim, S.H.;Baik, S.W.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Bioelectrical impedance (BI) at popliteal regions was measured using a bioelectrical impedance measurement system (BIMS), which employs the multi-frequency and the two-electrode method. Experiments were performed as follows. First, a constant AC current of $800{\mu}A$ was applied to the popliteal regions (left and right) and the BI was measured at eight different frequencies from 10 to 500 kHz. When the applied frequency greater than 50 kHz was applied to human's popliteal regions, the BI was decreased significantly. Logarithmic plot of impedance vs. frequency indicated two different mechanisms in the impedance phenomena before and after 50 kHz. Second, the relationship between resistance and reactance was obtained with respect to the applied frequency using BI (resistance and reactance) acquired from the popliteal regions. The phase angle (PA) was found to be strongly dependent on frequency. At 50 kHz, the PA at the right popliteal region was $7.8^{\circ}$ slightly larger than $7.6^{\circ}$ at the left popliteal region. Third, BI values of extracellular fluid (ECF) and intracellular fluid (ICF) were calculated using BIMS. At 10 kHz, the BI values of ECF at the left and right popliteal regions were $1664.14{\Omega}$ and $1614.08{\Omega}$, respectively. The BI values of ECF and ICF decreased sharply in the frequency range of 10 to 50 kHz, and gradually decreased up to 500 kHz. Logarithmic plot of BI vs. frequency shows that the BI of ICF decreased noticeably at high frequency above 300 kHz because of a large decrease in the capacitance of the cell membrane.