• Title/Summary/Keyword: M ssbauer

Search Result 183, Processing Time 0.087 seconds

청자 유약 발색메카니즘에 대한 뫼스바우어 분광법에 의한 연구 (Mössbauer Spectroscopic Study on Colorative Mechanism of Celadon Glaze)

  • 김종영;노형구;전아영;김응수;조우석;김경자;김진모;김철성
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.34-39
    • /
    • 2011
  • Systematic study on relationship between celadon coloring and glaze component was conducted by chromaticity analysis and M$\ddot{o}$ssbauer spectroscopic analysis. The chromaticity ($L^*$, $a^*$, $b^*$ values) and M$\ddot{o}$ssbauer analysis results were correlated to the amount of $Fe_2O_3$, $TiO_2$, MnO, and $P_2O_5$, which are the essential factors influencing celadon coloring. According to chromaticity analysis, celadon glaze color belongs to GY group when the addition of $TiO_2$ was 1.4%, whereas the color belongs to BG group when the addition of $TiO_2$ was 0.1%. For the GY group, the colors change from GY to YR with the decrease of brightness as the addition of $TiO_2$, MnO, and $P_2O_5$ increases. According to M$\ddot{o}$ssbauer analysis results, as the amount of divalent iron ion increases, the $a^*$ and $b^*$ values decrease, on the other hand, $L^*$ value increases. The ratio of divalent iron ion produced in reductive sintering process is found to be 80~95% in this study, which induces the increase of $L^*$ values in celadon glaze.

Effects of Mn Substitution on Crystallographic and Magnetic Properties of Li-Zn-Cu Ferrites

  • Lee, Young Bae;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.210-214
    • /
    • 2014
  • The effects of manganese substitution on the crystallographic and magnetic properties of Li-Zn-Cu ferrite, $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$ ($0.0{\leq}x{\leq}0.8$), were investigated. Ferrites were synthesized via a conventional ceramic method. We confirmed the formation of crystallized particles using X-ray diffraction, field emission scanning electron microscopy and $M{\ddot{o}}ssbauer$ spectroscopy. All of the samples showed a single phase with a spinel structure, and the lattice constants linearly decreased as the substituted manganese content increased, and the particle size of the samples also somewhat decreased as the doped manganese content increased. All the $M{\ddot{o}}ssbauer$ spectra can be fitted with two Zeeman sextets, which are the typical spinel ferrite spectra of $Fe^{3+}$ with A- and B-sites, and one doublet. The cation distribution was determined from the variation of the $M{\ddot{o}}ssbauer$ parameters and of the absorption area ratio. The magnetic behavior of the samples showed that an increase in manganese content led to a decrease in the saturation magnetization, whereas the coercivity was nearly constant throughout. The maximum saturation magnetization was 73.35 emu/g at x = 0.0 in $Li_{0.5}Zn_{0.2}Cu_{0.4}Mn_xFe_{2.1-x}O_4$.

Temperature Dependent Cation Distribution in Tb2Bi1Ga1Fe4O12

  • Park, Il-Jin;Park, Chu-Sik;Kang, Kyoung-Soo;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • 제13권3호
    • /
    • pp.110-113
    • /
    • 2008
  • In this study, heavy rare earth garnet $Tb_2Bi_1Ga_1Fe_4O_{12}$ powders were fabricated by a sol-gel and vacuum annealing process. The crystal structure was found to be single-phase garnet with a space group of Ia3d. The lattice constant $a_0$ was determined to be 12.465 ${\AA}$. From the analysis of the vibrating sample magnetometer (VSM) hysteresis loop at room temperature, the saturation magnetization and coercivity of the sample are 7.64 emu/g and 229 Oe, respectively. The N$\acute{e}$el temperature($T_N$) was determined to be 525 K. The M$\ddot{o}$ssbauer spectrum of $Tb_2Bi_1Ga_1Fe_4O_{12}$ at room temperature consists of 2 sets of 6 Lorentzians, which is the pattern of single-phase garnet. From the results of the M$\ddot{o}$ssbauer spectrum at room temperature, the absorption area ratios of Fe ions on 24d and 16a sites are 74.7% and 25.3%(approximately 3:1), respectively. These results show that all of the non-magnetic Ga atoms occupy the 16a site by a vacuum annealing process. Absorption area ratios of Fe ions are dependent not only on a sintering condition but also on the temperature of the sample. It can then be interpreted that the Ga ion distribution is dependent on the temperature of the sample. The M$\ddot{o}$ssbauer measurement was carried out in order to investigate the atomic migration in $Tb_2Bi_1Ga_1Fe_4O_{12}$.

Charge Transformation of CU-ions in CuxFe3-xO4 (χ=0.1, 0.2)

  • Lee, Choong Sub;Lee, Chan Young;Kwon, Dong Wook
    • Journal of Magnetics
    • /
    • 제7권2호
    • /
    • pp.25-28
    • /
    • 2002
  • Slowly cooled $Cu_xFe_{3-x}O_4$ ($\chi$=0.1, 0.2) have been investigated over a temperature range from 82 to 700 K using the M$\ddot{o}$ssbauer technique. X-ray diffraction shows that these have a single-phase cubic spinel structure of lattice parameters $\alpha$=8.396 and 8.398${\AA}$, respectively. Since Cu ions prefer B (octahedral) sites to A (tetrahedral) sites, the ionic distribution is $(Fe)_A[Fe_{2-x}Cu_x]_BO_4$. M$\ddot{o}$ssbauer spectra consisted of two sets of 6-line pattern from. A site in ferric state and B site in ferrous-ferric state. Intensity ratio of B to A subspectra is 1.0 at 82 K and increases to 2.0 at 700 K with increasing temperature. After annealing the samples under vacuum at $450^circ{C}$ for a half hour, x-ray diffraction patterns have the peaks of magnetite- and hematite-phase. Lattice constants of magnetite-phase are 8.395 and 8.392 ${\AA}$ smaller than 8.396 and 8.398 ${\AA}$ before annealing, respectively. M$\ddot{o}$ssbauer spectra reveal the conventional magnetite pattern with the additional hematite pattern. Intensity ratios of B to A subspectra fur magnetite-phase become 1.9-2.0 over all temperature ranges and Cu ions are distributed over A and B sites randomly. Ratios of hematite to total intensity in M$\ddot{o}$ssbauer spectra for $\chi$= 0.1 and $\chi$= 0.2 are 10 and 21%, respectively. These hematite ratios may be due to annealing under vacuum at $450^circ{C}$, which transforms $Cu^{2+}$ ionic states into $Cu^{1+}$. Verwey temperatures far $\chi$= 0.1 and $\chi$= 0.2 are $123\pm2$ K and $128\pm2$ K.

Mössbauer 공명에 의한 Mg2Ni1-xFex 합금의 연구 (Study of Mg2Ni1-xFex Alloys by Mössbauer Resonance)

  • 송명엽
    • 한국수소및신에너지학회논문집
    • /
    • 제10권2호
    • /
    • pp.119-130
    • /
    • 1999
  • $Mg_2Ni_{1-x}{^{57}}Fe_x$(x=0.015, 0.03, 0.06, 0.12 and 0.24)합금을 제작하여 $M{\ddot{o}}ssbauer$ 공명에 의한 연구를 하였다. x=0.015, 0.03 합금의 $M{\ddot{o}}ssbauer$ spectrum은 2개의 doublet(doublet 1, 2)을, x=0.06 합금의 spectrum은 2개의 doublet(doublet 1, 2)과 1개의 six-line을, 그리고 x=0.12, 0.24 합금의 spectrum은 six-line만 보인다. x=0.015, 0,03, 0.06 합금의 doublet 1은, 초 상자성 거동을 보여주는 과잉으로 존재하는 일부의 철 때문에 생기는 것으로 판단된다. doublet 2는, $Mg_2Ni$ 상의 Ni에 치환된 철에 기인한 것으로 판단된다. doublet 2의 isomer shift 크기 (0,24 ~ 0.28 mm/s)로 보아 $Fe^{+3}$로 존재함을 추측할 수 있다. 또한 doublet 2의 quadrapole splitting이 영이 아님으로부터 Fe 주위의 전자 배열이 비대칭을 이루고 있음을 알 수 있고, 그 크기 (1.20 ~ 1.38 mm/s)는 산화수 +3의 quadrapole splitting 값에 아주 가까운 값이다. 자기적 초미세 상호 작용을 보여주는 six-line은 합금 속에 들어가지 않는 철 때문에 생긴다. 수소화물화 반웅시킨 x=0.015, 0.03 합금의 $M{\ddot{o}}ssbauer$ spectrum이 six-line을 보였는데, 이로부터 수소화물화 반응으로 인하여 Fe이 편석되었음을 알 수 있다. 수소화물화 반응후 $M{\ddot{o}}ssbauer$ spectrum, 자기장의 함수로서 자화의 변화 측정, Auger electron spectroscopy, electron diffraction pattern 분석 결과, Ni의 편석과 MgO의 형성을 보여주었는데, 이는 수소 속에 들어 있는 미량의 산소가 $Mg_2Ni$와 반응하여 야기된 현상으로 생각된다.

  • PDF

Chromite 물질의 자기상호작용에 관한 뫼스바우어 분광연구 (Mössbauer Studies of Changed Interaction on Cr Ions in Chromite)

  • 최강룡;김철성
    • 한국자기학회지
    • /
    • 제17권1호
    • /
    • pp.47-50
    • /
    • 2007
  • 최근 geometrical frustration 현상 및 멀티페로익 효과가 Cr 이온의 나선 스핀 구조에 기인하는 것으로 해석되고 있다. 이에 본 연구에서는 Cr 이온 자리에 Fe을 치환하여 $CoCrFeO_4$를 제조하였고, $M\"{o}ssbauer$ 분광법에 의해 자기적 미세 구조의 상관관계를 연구하였다. 졸겔법을 이용하여 Fd3m의 cubic 스피넬 구조를 갖는 $CoCr_2O_4,\;CoCrFeO_4$ 단일상을 합성하였고, Rietveld 법에 의한 분석결과 격자상수는 $a_0=8.340$에서 $8.377{\AA}$로 증가 하였으며, Cr, Fe 이온은 모두 팔면체 구조에 위치하는 것으로 분석되었다. 자기 상전이 온도는 $T_N=97K$에서 320 K로 증가하였으며, 상호작용의 변화에 따라서 field cooled 온도에 따른 자화 곡선의 변화를 관측하였다. $M\"{o}ssbauer$ 스펙트럼 분석결과 4.2 K에서 공명흡수선에 대한 초미세자기장($H_{hf}$) 값은 각각 507, 492 kOe 정도로 나타났으며, 이성질체 이동치($\delta$)는 0.33, 0.34 mm/s 정도로 Fe 이온상태가 둘 다 +3 가의 이온상태임을 알 수 있었다.

망간-철산화물 나노입자의 뫼스바우어 분광 연구 (Mössbauer Studies of Manganese Iron Oxide Nanoparticles)

  • 현성욱;심인보;김철성;강경수;박주식
    • 한국자기학회지
    • /
    • 제18권1호
    • /
    • pp.24-27
    • /
    • 2008
  • Polyol법을 이용하여 $MnFe_2O_4$ 나노입자를 제조하고, X-선 회절기(XRD)와 진동시료형 자화율 측정기(VSM)를 이용하여 결정학적 및 거시적인 자기적 특성을 분석하였고, 뫼스바우어($M\"{o}ssbauer$) 분광실험을 통하여 $MnFe_2O_4$ 물질의 초미세 상호작용에 대한 연구를 수행하였다. 고분해능 투과형 전자 현미경(High Resolution Transmission Electron Microscope; HRTEM)을 이용하여 입자의 크기를 분석한 결과, 대부분의 입자크기가 $6{\sim}8$ nm 정도의 분포를 가지는 매우 균일한 입자로 형성되었음을 확인할 수 있었다. X-선 회절실험의 분석 결과, $a_0=8.418{\pm}0.001{\AA}$의 격자상수를 가지는 입방정형의 스피넬 구조로써 그 공간군이 Fd3m 임을 확인하였다. 상온에서의 VSM 측정결과 강한 초상자성 거동을 보였고, 뫼스바우어 분석결과로 상온에서 초상자성 영향에 따른 요동현상이 나타남을 관측할 수 있었다. 4.2K에서는 6개의 공명흡수선이 2 set으로 존재하고 초미세 자기장 값($H_{hf}$)이 A-site의 경우 498 kOe, B-site의 경우 521 kOe 로 분석되었다.

The Oxidation of Magnetic Particles in Medicinal Ointment

  • Kim, Eng-Chan
    • Journal of Magnetics
    • /
    • 제17권2호
    • /
    • pp.83-85
    • /
    • 2012
  • Magnetic particles in a novel, wound-healing ointment were studied using M$\ddot{o}$ssbauer spectroscopy and VSM to estimate the stability of the properties of the magnetic particles. The isomer shifts of $Fe_3O_4(A)$ were found to be 0.49-0.56 mm/s relative to iron metal, this indicates that the iron ions in $Fe_3O_4(A)$ are $Fe^{3+}$. On the other hand, the isomer shifts of $Fe_3O_4(B)$ were found to be 0.91-1.13 mm/s relative to iron metal, this shows that the ion state of $Fe_3O_4(B)$ is a mixed state of $Fe^{2+}$ and $Fe^{3+}$. It is noted that this composition, as well as that of the initial pure component in the form of a highly dispersed fraction (${\sim}10\;{\AA}$), differs from the stoichiometric one. It was found that the area ratio of the M$\ddot{o}$ssbauer subspectra of $Fe_3O_4(A)$ / $Fe_3O_4(B)$ taken at 87 and 181 K linearly increased in comparison to the initial pure magnetic particles, but the rate of increase of the area ratio at 181 K was about two times that at 87 K. From the magnetic hyperfine field, despite their small size, the particles exhibit no superparamagnetism.

Mössbauer Spectroscopic Studies of NiZn Ferrite Prepared by the Sol-Gel Method

  • Niyaifar, Mohammad;Mohammadpour, Hory;Rodriguez, Anselmo F.R.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.246-251
    • /
    • 2015
  • This study was aimed to study the effect of Zn content on the hyperfine parameters and the structural variation of $Ni_{1-x}Zn_xFe_2O_4$ for x = 0, 0.2, 0.4, 0.6, and 0.8. To achieve this, a sol-gel route was used for the preparation of samples and the obtained ferrites were investigated by X-ray diffraction, scanning electron microscopy, and $M{\ddot{o}}ssbauer$ spectroscopy. The formation of spinel phase without any impurity peak was identified by X-ray diffraction of all the samples. Moreover, the estimated crystallite size by X-ray line broadening indicates a decrease with increasing Zn content. This result was in agreement with the scanning electron microscopy result, indicating the reduction in grain growth with further zinc substitution. The room-temperature $M{\ddot{o}}ssbauer$ spectra show that the hyperfine fields at both the A and B sites decreased with increasing Zn content; however, the rate of reduction is not the same for different sites. Moreover, the best fit parameter showed that the quadrupole splitting values of B site increased from the pure nickel ferrite to the sample with x = 0.8.

Synthesis and Magnetic Properties of Nano-sized Mn Ferrite Powder and Film

  • Kwon, Woo-Hyun;Lee, Jae-Gwang;Lee, Young-Bae;Chae, Kwang-Pyo
    • Journal of Magnetics
    • /
    • 제16권1호
    • /
    • pp.27-30
    • /
    • 2011
  • Nano-sized manganese ferrite powders and films, $MnFe_2O_4$, were fabricated by the sol-gel method, and the effects of annealing temperature on the crystallographic and magnetic properties were studied by using X-ray diffractometry, field emission scanning electron microscopy, M$\"{o}$ssbauer spectroscopy, and vibrating sample magnetometry. X-ray diffraction spectroscopy of powder samples annealed above 523 K indicated the presence of spinel structure, and the film samples annealed above 773 K also had spinel structure. The particle size increased with the annealing temperature. For the powder samples, the Mossbauer spectra annealed above 573 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of $Fe^{3+}$ ions. Using the M$\"{o}$ssbauer subspectrum area ratio the cation distribution could be written as ($Mn_{0.52}Fe_{0.48}$) $[Mn_{0.48}Fe_{1.52}]$ $O_4$. However the spectrum annealed at 523 K only showed as a doublet due to a superparamagnetic phase. As the annealing temperature was increased, the saturation magnetization and the corecivity of the powder samples increased, as did the coercivity of film samples.