• Title/Summary/Keyword: M&S Technique

Search Result 2,416, Processing Time 0.035 seconds

Adaptive Irregular Binning and Its Application to Video Coding Scheme Using Iterative Decoding (적응 불규칙 양자화와 반복 복호를 이용한 비디오 코딩 방식에의 응용)

  • Choi Kang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.391-399
    • /
    • 2006
  • We propose a novel low complexity video encoder, at the expense of a complex decoder, where video frames are intra-coded periodically and frames in between successive intra-coded frames are coded efficiently using a proposed irregular binning technique. We investigate a method of forming an irregular binning which is capable of quantizing any value effectively with only small number of bins, by exploiting the correlation between successive frames. This correlation is additionally exploited at the decoder, where the quality of reconstructed frames is enhanced gradually by applying POCS(projection on the convex sets). After an image frame is reconstructed with the irregular binning information at the proposed decoder, we can further improve the resulting quality by modifying the reconstructed image with motion-compensated image components from the neighboring frames which are considered to contain image details. In the proposed decoder, several iterations of these modification and re-projection steps can be invoked. Experimental results show that the performance of the proposed coding scheme is comparable to that of H.264/AVC coding in m mode. Since the proposed video coding does not require motion estimation at the encoder, it can be considered as an alternative for some versions of H.264/AVC in applications requiring a simple encoder.

Mono-layer Compositional Analysis of Surface of Mineral Grains by Time-of-Flight Secondary-Ion Mass Spectrometry (TOF-SIMS) (TOF-SIMS를 이용한 광물 표면의 단층조직 분석 연구)

  • Kong Bong Sung;Chryssoulis Stephen;Kim Joo Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.127-134
    • /
    • 2005
  • Although the bulk composition of materials is one of the major considerations in extractive metallurgy and environmental science, surface composition and topography control surface reactivity, and consequently play a major role in determining metallurgical phenomena and pollution by heavy metals and organics. An understanding of interaction mechanisms of different chemical species at the mineral surface in an aqueous media is very important in natural environment and metallurgical processing. X-ray photoelectron spectroscopy (XPS) has been used as an ex-situ analytical technique, but the material to be analyzed can be any size from $100\;{\mu}m$ up to about 1 cm. It can also measure mixed solids powders, but it is impossible to ascertain the original source of resulting x-ray signals where they were emitted from, since it radiates and scans the macro sample surface area. The study demonstrated the ability of TOF-SIMS to detect individual organic species on the surfaces of mineral particles from plant samples and showed that the TOF-SIMS techniques provides an excellent tool for establishing the surface compositions of mineral grains and relative concentrations of chemicals on mineral species.

Characteristics of A Diaphragm-Type Fiber Optic Fabry-Perot Interferometric Pressure Sensor Using A Dielectric Film (유전체 박막을 이용한 다이아프램형 광섬유 Fabry-Perot 간섭계 압력센서의 특성)

  • Kim, M.G.;Yoo, Y.W.;Kwon, D.H.;Lee, J.H.;Kim, J.S.;Park, J.H.;Chai, Y.Y.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.147-153
    • /
    • 1998
  • The strain characteristics of a fiber optic Fabry-Perot pressure sensor with high sensitivity using a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ (N/O/N) diaphragm is experimentally investigated. A 600 nm thick N/O/N diaphragm was fabricated by silicon anisotropic etching technology in 44 wt% KOH solution. An interferometric fiber optic pressure sensor has been manufactured by using a fiber optic Fabry-Perot intereferometer and a N/O/N diaphragm. The 2 cm length fiber optic Fabry-Perot interferometers in the continuous length of single mode fiber were produced with two pieces of single mode fiber coated with $TiO_{2}$ dielectric film utilizing the fusion splicing technique. The one end of the fiber optic Fabry-Perot interferometer was bonded to a N/O/N diaphragm. and the other end was connected to an optical setup through a 3 dB coupler. For the N/O/N diaphragm sized $2{\times}2\;mm^{2}$ and $8{\times}8\;mm^{2}$, the pressure sensitivity was measured 0.11 rad/kPa and 1.57 rad/kPa, respectively, and both of the nonlinearities were less than 0.2% FS.

  • PDF

Construction Claims Prediction and Decision Awareness Framework using Artificial Neural Networks and Backward Optimization

  • Hosny, Ossama A.;Elbarkouky, Mohamed M.G.;Elhakeem, Ahmed
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents optimized artificial neural networks (ANNs) claims prediction and decision awareness framework that guides owner organizations in their pre-bid construction project decisions to minimize claims. The framework is composed of two genetic optimization ANNs models: a Claims Impact Prediction Model (CIPM), and a Decision Awareness Model (DAM). The CIPM is composed of three separate ANNs that predict the cost and time impacts of the possible claims that may arise in a project. The models also predict the expected types of relationship between the owner and the contractor based on their behavioral and technical decisions during the bidding phase of the project. The framework is implemented using actual data from international projects in the Middle East and Egypt (projects owned by either public or private local organizations who hired international prime contractors to deliver the projects). Literature review, interviews with pertinent experts in the Middle East, and lessons learned from several international construction projects in Egypt determined the input decision variables of the CIPM. The ANNs training, which has been implemented in a spreadsheet environment, was optimized using genetic algorithm (GA). Different weights were assigned as variables to the different layers of each ANN and the total square error was used as the objective function to be minimized. Data was collected from thirty-two international construction projects in order to train and test the ANNs of the CIPM, which predicted cost overruns, schedule delays, and relationships between contracting parties. A genetic optimization backward analysis technique was then applied to develop the Decision Awareness Model (DAM). The DAM combined the three artificial neural networks of the CIPM to assist project owners in setting optimum values for their behavioral and technical decision variables. It implements an intelligent user-friendly input interface which helps project owners in visualizing the impact of their decisions on the project's total cost, original duration, and expected owner-contractor relationship. The framework presents a unique and transparent hybrid genetic algorithm-ANNs training and testing method. It has been implemented in a spreadsheet environment using MS Excel$^{(R)}$ and EVOLVERTM V.5.5. It provides projects' owners of a decision-support tool that raises their awareness regarding their pre-bid decisions for a construction project.

Manufacturing Method for Sensor-Structure Integrated Composite Structure (센서-구조 일체형 복합재료 구조물 제작 방법)

  • Han, Dae-Hyun;Kang, Lae-Hyong;Thayer, Jordan;Farrar, Charles
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.155-161
    • /
    • 2015
  • A composite structure was fabricated with embedded impact detection capabilities for applications in Structural Health Monitoring (SHM). By embedding sensor functionality in the composite, the structure can successfully perform impact localization in real time. Smart resin, composed of $Pb(Ni_{1/3}Nb_{2/3})O_3-Pb(Zr,\;Ti)O_2$ (PNN-PZT) powder and epoxy resin with 1:30 wt%, was used instead of conventional epoxy resin in order to activate the sensor function in the composite structure. The embedded impact sensor in the composite was fabricated using Hand Lay-up and Vacuum Assisted Resin Transfer Molding(VARTM) methods to inject the smart resin into the glass-fiber fabric. The electrodes were fabricated using silver paste on both the upper and bottom sides of the specimen, then poling treatment was conducted to activate the sensor function using a high voltage amplifier at 4 kV/mm for 30 min at room temperature. The composite's piezoelectric sensitivity was measured to be 35.13 mV/N by comparing the impact force signals from an impact hammer with the corresponding output voltage from the sensor. Because impact sensor functionality was successfully embedded in the composite structure, various applications of this technique in the SHM industry are anticipated. In particular, impact localization on large-scale composite structures with complex geometries is feasible using this composite embedded impact sensor.

Multiscale Virtual Testing Machines of Concrete and Other Composite Materials: A Review (콘크리트 및 복합재료용 멀티스케일 가상 시험기계에 관한 소고)

  • Haile, Bezawit F.;Park, S.M.;Yang, B.J.;Lee, H.K.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.4
    • /
    • pp.173-181
    • /
    • 2018
  • Recently composite materials have dominated most engineering fields, owing to their better performance, increased durability and flexibility to be customized and designed for a specific required property. This has given them unprecedented superiority over conventional materials. With the help of the ever increasing computational capabilities of computers, researchers have been trying to develop accurate material models for the complex and integrated properties of these composites. This has led to advances in virtual testing of composite materials as a supplement or a possible replacement of laboratory experiments to predict the properties and responses of composite materials and structures. This paper presents a review on the complex multi-scale modelling framework of the virtual testing machines, which involve computational mechanics at various length-scales starting with nano-mechanics and ending in structure level computational mechanics, with a homogenization technique used to link the different length scales. In addition, the paper presents the features of some of the biggest integrated virtual testing machines developed for study of concrete, including a multiscale modeling scheme for the simulation of the constitutive properties of nanocomposites. Finally, the current challenges and future development potentials for virtual test machines are discussed.

Design and Construction of Detector Module for UFFO Burst Alert & Trigger Telescope

  • Jung, Aera;Ahmad, Salleh;Barrillon, Pierre;Brandt, Soren;Budtz-Jorgensen, Carl;Castro-Tirado, Alberto J.;Chen, Pisin;Choi, Ji Nyeong;Choi, Yeon Ju;Connell, Paul;Dagoret-Campagne, Sylvie;Eyles, Christopher;Grossan, Bruce;Huang, Ming-Huey A.;Jeong, Soomin;Kim, Ji Eun;Kim, Min Bin;Kim, Sug-Whan;Kim, Ye Won;Krasnov, A.S.;Lee, Jik;Lim, Heuijin;Linder, Eric V.;Liu, T.C.;Lund, Niels;Min, Kyung Wook;Na, Go Woon;Nam, Ji Woo;Panasyuk, Mikhile I.;Park, Il Hung;Ripa, Jakub.;Reglero, Victor;Rodrigo, Juana M.;Smoot, George.F.;Suh, Jung Eun;Svertilov, Sergei.;Vedenkin, Nikolay;Wang, Min-Zu;Yashin, Ivan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.207.1-207.1
    • /
    • 2012
  • One of the key aspects of the upcoming Ultra-Fast Observatory (UFFO) Pathfinder for Gamma-Ray Bursts(GRBs) identification will be the UFFO Burst Alert & Trigger Telescope(UBAT), based on a novel space telescope technique. The UBAT consists of coded mask, hopper, and detector module(DM). The UBAT DM consists of YSO crystal arrays, multi-anode photo mulipliers, and readout electronics. We will present the design and construction of the UBAT DM, and the response of the UBAT DM to X-ray sources.

  • PDF

An experimental study on the positional relations of centric relation, centric occlusion and myo-co, and free-way space using Mandibular Kinesiograph and Myo-monitor (Mandibular Kinesiograph 및 Myo-monitor 를 이용(利用)한 중심위(中心位), 중심교합(中心咬合), myo-co의 상호위치(相互位置) 및 자유로간격(自由路間隔)에 관(關)한 실험적연구(實驗的硏究))

  • Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.73-86
    • /
    • 1980
  • Recently, the controversy continues as to whether maximum intercuspation of teeth should occur at the terminal hinge position(the condylar theory) or at the myo-co(the neuromuscular theory). There is also much controversy regarding the antero-posterior position of myo-co. The object of this study was to measure and compare with the positional relations of centric relation, centric occlusion and myo-co, and free-way space using Mandibular Kinesiograph and Myo-monitor in the 40 subjects without stomatognathic problems. Mandibular Kinesiograph(M.K.G.) was originally conceived as a research instrument to track mandibular movement and position. As its use in research progressed, its great diagnostic value became apparent in case by case. And Myo-monitor was developed as a means of applying the neuromuscular approach to occlusion. Thus the Myo-monitor technique is an intra-systemic approach to occlusal positioning using patient's own musculature, and Myo-monitor is used to relax the musculature by a light myopulse induced electronically. From this experiment, the following results were obtained. 1. The adaptive free-way space before muscle relaxation was an average of $1.6{\pm}60mm$, and the true free-way space after muscle relaxation using Myo-monitor was an average of $2.4{\pm}0.74mm$. 2. It took an average of $25{\pm}3.11$ minutes to relax the mandibular musculature by Myo-monitor and administration of 5mg. Diazepam and an average of $38{\pm}4.73$ minutes by Myo-monitor without administration of Diazepam. 3. Myo-co existed anterior to centric occlusion, with an average of $0.53{\pm}0.31$ mm, and centric relation existed posterior to centric occlusion, with an average of $0.57{\pm}0.58mm$ before muscle relaxation and with an average of $0.57{\pm}0.43mm$ after muscle relaxation. 4. Centric relation coincided with centric occlusion in 5 of 40 subjects(12.5%), and posterior to centric occlusion in the rest of cases (87.5%). 5. Myo-co existed anterior to centric occlusion in 38 of 40 subjects(95%), except 1 subject that coincided with centric occlusion and 1 subject that existed posterior to centric occlusion. 6. Myo-co and centric relation existed inferior to centric occlusion and the lateral displacement was various with individual difference. 7. The total displacement from centric occlusion to centric relation was an average of $0.74{\pm}0.64mm$ before muscle relaxation, and an average of $0.68{\pm}0.53mm$ after muscle relaxation, and the total displacement from centric occlusion to myo-co was an average of $1.07{\pm}0.58mm$.

  • PDF

Gravity-Geologic Prediction of Bathymetry in the Drake Passage, Antarctica (Gravity-Geologic Method를 이용한 남극 드레이크 해협의 해저지형 연구)

  • 김정우;도성재;윤순옥;남상헌;진영근
    • Economic and Environmental Geology
    • /
    • v.35 no.3
    • /
    • pp.273-284
    • /
    • 2002
  • The Gravity-Geologic Method (GGM) was implemented for bathymetric determinations in the Drake Passage, Antarctica, using global marine Free-air Gravity Anomalies (FAGA) data sets by Sandwell and Smith (1997) and local echo sounding measurements. Of the 6548 bathymetric sounding measurements, two thirds of these points were used as control depths, while the remaining values were used as checkpoints. A density contrast of 9.0 gm/㎤ was selected based on the checkpoints predictions with changes in the density contrast assumed between the seawater and ocean bottom topographic mass. Control depths from the echo soundings were used to determine regional gravity components that were removed from FAGA to estimate the gravity effects of the bathymetry. These gravity effects were converted to bathymetry by inversion. In particular, a selective merging technique was developed to effectively combine the echo sounding depths with the GGM bathymetiy to enhance high frequency components along the shipborne sounding tracklines. For the rugged bathymetry of the research area, the GGM bathymetry shows correlation coefficients (CC) of 0.91, 0.92, and 0.85 with local shipborne sounding by KORDI, GEODAS, and a global ETOPO5 model, respectively. The enhanced GGM by selective merging shows imploved CCs of 0.948 and 0.954 with GEODAS and Smith & Sandwell (1997)'s predictions with RMS differences of 449.8 and 441.3 meters. The global marine FAGA data sets and other bathymetric models ensure that the GGM can be used in conjunction with shipborne bathymetry from echo sounding to extend the coverage into the unmapped regions, which should generate better results than simply gridding the sparse data or relying upon lower resolution global data sets such as ETOPO5.

THE EFFECT OF DIFFERENT CURING MODES ON COMPOSITE RESIN/DENTIN BOND STRENGTH IN CLASS ICAVITIES (1급 와동에서 상아질과 복합레진의 결합강도에 대한 중합방법의 효과)

  • Baek, Shin-Young;Cho, Young-Gon;Song, Byeong-Choon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.5
    • /
    • pp.428-434
    • /
    • 2008
  • The purpose of this study was to compare the microtensile bond strength in Class I cavities associated with different light curing modes of same light energy density. Occlusal enamel was removed to expose a flat dentin surface and twenty box-shaped Class I cavities were prepared in dentin. Single Bond (3M Dental product) was applied and Z 250 was inserted using bulk technique. The composite was light-cured using one of four techniques, pulse delay (PD group), soft-start (SS group), pulse cure (PC group) and standard continuous cure (CC group). The light-curing unit capable of adjusting time and intensity (VIP, Bisco Dental product) was selected and the light energy density for all curing modes was fixed at $16J/cm^2$. After storage for 24 hours, specimens were sectioned into beams with a rectangular cross-sectional area of approximately $1mm^2$ Microtensile bond strength $({\mu}TBS)$ test was per- formed using a univel·sal testing machine (EZ Test, Shimadzu Co.). The results were analyzed using oneway ANOVA and Tukey's test at significance level 0.05. The ${\mu}TBS$ of PD group and SS group was higher than that of PC group and CC group. Within the limitations of this in vitro study, modification of curing modes such as pulse delay and soft start polymerization can improve resin/dentin bond strength in Class I cavities by controlling polymerization velocity of composite resin.