• Title/Summary/Keyword: Lysosomal storage disorders

Search Result 16, Processing Time 0.018 seconds

Lysosomal Storage Disorders in India: A Mini Review

  • Gupta, Neerja;Aggarwal, Bhawana;Kabra, Madhulika
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.4 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Lysosomal storage disorders are a group of rare inherited metabolic disorders with protean manifestations and variable severity ranging from attenuated forms to severe ones. It is necessary to diagnose and manage these disorders timely before irreversible damage occurs. Prior to the era of enzyme replacement therapy and newer therapeutics, only treatment option available was palliative care. Over the past two decades, extensive research in the lysosomal storage disorders has led to substantial expansion of our understanding about them. This mini review focusses on the spectrum, challenges faced in the diagnosis and therapy and remedial actions taken so far in lysosomal storage disorders in resource constrained country like India.

Development of New Strategies for Enzyme Replacement Therapy for Lysosomal Storage Disorders

  • Ko, Ah-Ra
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.17-18
    • /
    • 2016
  • Enzyme replacement therapy (ERT) is a well-established means of treating lysosomal storage disease (LSD). However, classical IV infusion based ERT method produces less than ideal results, especially, CNS defects and quality of life in patients. To improve these main problems of parental IV formulation for LSDs, we investigate modified ERT method and evaluated the efficacy in animal model.

Newborn Screening for Lysosomal Storage Diseases in Taiwan

  • Lin, Hsiang-Yu;Chuang, Chih-Kuang;Lin, Shuan-Pei
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2017
  • Lysosomal storage diseases (LSDs) are a group of rare inherited metabolic disorders caused by the deficiency of specific lysosomal enzymes and subsequent accumulation of substrates. Enzyme deficiency leads to progressive intra-lysosomal accumulation of the incompletely degraded substances, which cause dysfunction and destruction of the cell and eventually multiple organ damage. Patients have a broad spectrum of clinical phenotypes which are generally not specific for some LSDs, leading to missed or delayed diagnosis. Due to the availability of treatment including enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation for some LSDs, early diagnosis is important. ERT products have been approved with optimal outcomes for some LSDs in the recent decades, including Gaucher, Fabry, mucopolysaccharidosis (MPS) I, Pompe, MPS VI, MPS II, and MPS IVA diseases. ERT can stabilize the clinical condition, prevent disease progression, and improve the long-term outcome of these diseases, especially if started prior to irreversible organ damage. Based on the availability of therapy and suitable screening methods in the recent years, some LSDs, including Pompe, Fabry, Gaucher, MPS I, MPS II, and MPS VI diseases have been incorporated into nationwide newborn screening panels in Taiwan.

Genetic and Molecular Mechanisms in the Neuronal Ceroid-Lipofuscinoses (유전질환 신경 세로이드 리포푸신증들에 대한 고찰)

  • Lee, Min-Young;Kim, Dong-Hyun;Yoon, Dong-Ho;Kim, Han-Bok;Park, Joo-Hoon;Lee, Hwan-Myoung;Kim, Sung-Hoon;Kim, Sung-Jo
    • Development and Reproduction
    • /
    • v.13 no.2
    • /
    • pp.63-77
    • /
    • 2009
  • The neuronal ceroid-lipofuscinoses (NCLs) are a kind of neurodegenerative storage disorders. The NCLs are charecterizated by accumulation of autofluorescent lipofuscin or lipopigment in the brain. All NCL group belongs to in lysosomal storage disorders (LSDs), except Northern epilepsy. NCLs are the most common group of progressive neurodegenerative disorders in childhood, with an incidence as high as I in 12,500 live births. Four main clinical types have been described based on the onset age : infantile, late infantile, juvenile and adult types. Clinical symptoms of NCLs include loss of vision, seizures, epilepsy, progressive mental retardation and a premature death. Although mutation causes neurodegeneration in NCLs, the molecular mechanism by which mutation leads to neurodegeneration remains unclear. In this paper, we review the characteristics of these NCLs.

  • PDF

Skeletal Manifestations of Inborn Errors of Metabolism: A Comprehensive Retrospect (선천성 대사 이상 질환에서의 골격계 증상 발현)

  • Sung Yoon Cho
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Inborn errors of metabolism encompass a wide variety of disorders, frequently affecting bone. This review presents a comprehensive retrospect on the primary involvement of bone in inborn errors of metabolism. Primary involvement of bone in inborn errors of metabolism includes entities that primarily affect the bone marrow, mineral component or cartilage. These include lysosomal storage disorders, hypophosphatasia, and hereditary hypophosphatemic rickets. In this review, we discuss the primary involvement of bone in inborn errors of metabolism (hypophosphatasia, X-linked hypophosphatemic rickets, Gaucher disease, and mucopolysaccharidoses) along with the therapeutic agents used in clinical settings, diagnostic strategies, and general management. With the development of disease-specific targeted therapies and supportive care, more number of patients with these disorders live longer and survive into adulthood. Moreover, skeletal symptoms have become a more prominent feature of these disorders. This makes the awareness of these skeletal symptoms more important.

  • PDF

Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor

  • Lee, Hyun;Bae, Jae-sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.806-813
    • /
    • 2015
  • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrowderived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.

GINGIVAL HYPERPLASIA IN A MUCOPOLYSACCHARIDOSIS' PATIENT : A CASE REPORT (뮤코다당증(Mucopolysaccharidosis)환아의 치은 증식)

  • Song, Ju-Hyun;Jang, Chul-Ho;Kim, Young-Jae;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.34 no.1
    • /
    • pp.150-155
    • /
    • 2007
  • Mucopolysaccharidosis (MPS) is a disorder of storage in which there is excessive accumulation of glycosaminoglycans (GAGs) from lysosomal enzyme defect. Lysosomal accumulation of GAGs eventually results in cell, tissue and organ dysfunction. This patient may manifest mental retardation and physical disorders. This clinical report presents a girl with MPS having severe gingival hyperplasia. Gingivectomy was performed under general anesthesia. The pediatric dentist must be aware of oral manifestations present in the MPS. The approach to dental management will require teamwork between the dentist and the patient's physician.

  • PDF

Recent Advances in the Clinical Application of Next-Generation Sequencing

  • Ki, Chang-Seok
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Next-generation sequencing (NGS) technologies have changed the process of genetic diagnosis from a gene-by-gene approach to syndrome-based diagnostic gene panel sequencing (DPS), diagnostic exome sequencing (DES), and diagnostic genome sequencing (DGS). A priori information on the causative genes that might underlie a genetic condition is a prerequisite for genetic diagnosis before conducting clinical NGS tests. Theoretically, DPS, DES, and DGS do not require any information on specific candidate genes. Therefore, clinical NGS tests sometimes detect disease-related pathogenic variants in genes underlying different conditions from the initial diagnosis. These clinical NGS tests are expensive, but they can be a cost-effective approach for the rapid diagnosis of rare disorders with genetic heterogeneity, such as the glycogen storage disease, familial intrahepatic cholestasis, lysosomal storage disease, and primary immunodeficiency. In addition, DES or DGS may find novel genes that that were previously not linked to human diseases.

From diagnosis to treatment of mucopolysaccharidosis type VI: A case report with a novel variant, c.1157C>T (p.Ser386Phe), in ARSB gene

  • Yoo, Sukdong;Lee, Jun;Kim, Minji;Yoon, Ju Young;Cheon, Chong Kun
    • Journal of Genetic Medicine
    • /
    • v.19 no.1
    • /
    • pp.32-37
    • /
    • 2022
  • Mucopolysaccharidosis type VI (MPS VI) is an autosomal recessive lysosomal disorder caused by the deficiency of arylsulfatase B due to mutations in the ARSB gene. Here, we report the case of a Korean female with a novel variant of MPS VI. A Korean female aged 5 years and 8 months, who is the only child of a healthy non-consanguineous Korean couple, presented at our hospital for severe short stature. She had a medical history of umbilical hernia and recurrent otitis media. Her symptoms included snoring and mouth breathing. Subtle dysmorphic features, including mild coarse face, joint contracture, hepatomegaly, and limited range of joint motion, were identified. Radiography revealed deformities, suggesting skeletal dysplasia. Growth hormone (GH) provocation tests revealed complete GH deficiency. Targeted exome sequencing revealed compound heterozygous mutations in the ARSB genes c.512G>A (p.Gly171Asp; a pathogenic variant inherited from her father) and c.1157C>T (p.Ser386Phe; a novel variant inherited from her mother in familial genetic testing). Quantitative tests revealed increased urine glycosaminoglycan (GAG) levels and decreased enzyme activity of arylsulfatase B. While on enzyme replacement therapy and GH therapy, her height increased drastically; her coarse face, joint contracture, snoring, and obstructive sleep apnea improved; urine GAG decreased; and left ventricular mass index was remarkably decreased. We report a novel variant-c.1157C>T (p.Ser386Phe)-of the ARSB gene in a patient with MPS VI; these findings will expand our knowledge of its clinical spectrum and molecular mechanisms.

Treatment and management of patients with inherited metabolic diseases (유전성 대사질환의 치료 및 관리)

  • Lee, Jin-Sung
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.11
    • /
    • pp.1152-1157
    • /
    • 2006
  • Inherited metabolic disease is rare disorders that show symptoms mainly in pediatric age and early treatment is important for preventing complications of the disease. Recent development in molecular and biochemical techniques help clinicians with proper diagnosis of patients, however, many of the disease still remain lack of effective therapeutic strategies. Better understanding on biochemical and molecular basis of pathogenesis of the disease combined with advanced medical care would provide new sight on the disease that can also improve the quality of life and long-term prognosis of patients. Traditionally, there are several modalities in the treatment of metabolic diseases depend on the biochemical basis of the disease such as diet restriction, removing or blocking the production of toxic metabolites, and stimulating residual enzyme activity. The inherited metabolic disease is not familiar for many clinicians because the diagnosis is troublesome, treatment is complicated and prognosis may not as good as expected in other diseases. Recently, new therapeutic regimens have been introduced that can significantly improve the medical care of patients with metabolic disease. Enzyme replacement therapy has showed promising efficacy for lysosomal storage disease, bone marrow transplantation is effective in some disease and gene therapy has been trying for different diseases. The new trials for treatment of the disease will give us promising insight on the disease and most clinicians should have more interest in medical progress of the metabolic disease.