• 제목/요약/키워드: Lysosomal storage disorder

검색결과 35건 처리시간 0.024초

Long-term clinical course of a patient with mucopolysaccharidosis type IIIB

  • Kim, Ja Hye;Chi, Yang Hyun;Kim, Gu-Hwan;Yoo, Han-Wook;Lee, Jun Hwa
    • Clinical and Experimental Pediatrics
    • /
    • 제59권sup1호
    • /
    • pp.37-40
    • /
    • 2016
  • Mucopolysaccharidosis type III (MPS III) is a rare genetic disorder caused by lysosomal storage of heparan sulfate. MPS IIIB results from a deficiency in the enzyme alpha-N-acetyl-D-glucosaminidase (NAGLU). Affected patients begin showing behavioral changes, progressive profound mental retardation, and severe disability from the age of 2 to 6 years. We report a patient with MPS IIIB with a long-term follow-up duration. He showed normal development until 3 years. Subsequently, he presented behavioral changes, sleep disturbance, and progressive motor dysfunction. He had been hospitalized owing to recurrent pneumonia and epilepsy with severe cognitive dysfunction. The patient had compound heterozygous c.1444C>T (p.R482W) and c.1675G>T (p.D559Y) variants of NAGLU. Considering that individuals with MPS IIIB have less prominent facial features and skeletal changes, evaluation of long-term clinical course is important for diagnosis. Although no effective therapies for MPS IIIB have been developed yet, early and accurate diagnosis can provide important information for family planning in families at risk of the disorder.

Quality of Life in Pediatric Patients with Mucopolysaccharidosis

  • Na, Jong-Cheon;Jin, Dong-Kyu;Kwon, Eun-Kyung;Lee, Suk-Hyang
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.431.2-432
    • /
    • 2002
  • Mucopolysaccharidosis (MPS) is a genetic disorder with deficiency of Iysomal enzymes needed for the degradation of glycosaminoglycans(GAGs). This storage disease is characterized by intra-lysosomal accumulation of GAGs. progressive mental and physical deterioration. multi-organ failure and premature death. Quality of life (QOL) is very low in MPS patients. The MOS 36-ltem Short Form Health Survey (SF-36) was designed to measure the eight (8) dimensions of health in clinical and general population settings. (omitted)

  • PDF

뮤코다당증(Mucopolysaccharidosis)환아의 치은 증식 (GINGIVAL HYPERPLASIA IN A MUCOPOLYSACCHARIDOSIS' PATIENT : A CASE REPORT)

  • 송주현;장철호;김영재;한세현;이상훈
    • 대한소아치과학회지
    • /
    • 제34권1호
    • /
    • pp.150-155
    • /
    • 2007
  • 뮤코다당증(Mucopolysaccharidosis, MPS)은 glycosaminoglycans(GAGs)의 분해에 필요한 라이소좀 효소(lysosomal enzymes)의 결함으로 GAGs의 대사 산물이 세포의 라이소좀내에 축적되어 점차 세포와 조직, 기관의 기능 이상을 초래하고 신체 질환과 정신 발달 지연을 가져오는 질환이다. 본 증례는 심각한 치은 증식을 가진 뮤코다당증 환아를 전신 마취 하에 치은 절제술을 시행한 치험례이다. 소아치과 의사는 뮤코다당증 환아의 구강내 증상과 치과 치료시 주의 사항에 대해 숙지해야 하고, 내과의와 연계하여 환아의 전신 상태 변화에 민감하게 대처하여 치과 치료를 시행해야 한다.

  • PDF

Prenatal Diagnosis of Mucolipidosis Type II: Comparison of Biochemical and Molecular Analyses

  • Kosuga, Motomichi;Okada, Michiyo;Migita, Osuke;Tanaka, Toju;Sago, Haruhiko;Okuyama, Torayuki
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제2권1호
    • /
    • pp.19-22
    • /
    • 2016
  • Purpose: Mucolipidosis type II (ML II), also known as I-cell disease is an autosomal recessive inherited disorder of lysosomal enzyme transport caused by a deficiency of the uridine diphosphate (UDP)-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase (GlcNAc-phosphotransferase). Clinical manifestations are skeletal abnormalities, mental retardation, cardiac disease, and respiratory complications. A severely and rapidity progressive clinical course leads to death before 10 years of age. Methods/Results: In this study we diagnosed three cases of prenatal ML II in two different at-risk families. We compared two procedures -biochemical analysis and molecular analysis - for the prenatal diagnosis of ML II. Both methods require an invasive procedure to obtain specimens for the diagnosis. Biochemical analysis requires obtaining cell cultures from amniotic fluid for more than two weeks, and would result in a late diagnosis at 19 to 22 weeks of gestation. Molecular genetic testing by direct sequence analysis is usually possible when mutations are confirmed in the proband. Molecular analysis has an advantage in that it can be performed during the first-trimester. Conclusion: Molecular diagnosis is a preferable method when a prompt decision is necessary.

Joint Problems in Patients with Mucopolysaccharidosis Type II

  • Kim, Min-Sun;Kim, Jiyeon;Noh, Eu Seon;Kim, Chiwoo;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제5권1호
    • /
    • pp.17-21
    • /
    • 2021
  • Hunter syndrome or mucopolysaccharidosis type II (MPS-II) (OMIM 309900) is a rare lysosomal storage disorder caused by deficiency in the activity of the enzyme iduronate-2-sulfatase. This enzyme is responsible for the catabolism of the following two different glycosaminoglycans (GAGs): dermatan sulfate and heparan sulfate. The lysosomal accumulation of these GAG molecules results in cell, tissue, and organ dysfunction. Patients can be broadly classified as having one of the following two forms of MPS II: a severe form and an attenuated form. In the severe form of the disease, signs and symptoms (including neurological impairment) develop in early childhood, whereas in the attenuated form, signs and symptoms develop in adolescence or early adulthood, and patients do not experience significant cognitive impairment. The involvement of the skeletal-muscle system is because of essential accumulated GAGs in joints and connective tissue. MPS II has many clinical features and includes two recognized clinical entities (mild and severe) that represent two ends of a wide spectrum of clinical severities. However, enzyme replacement therapy is likely to have only a limited impact on bone and joint disease based on the results of MPS II studies. The aim of this study was to review the involvement of joints in MPS II.

유전질환 신경 세로이드 리포푸신증들에 대한 고찰 (Genetic and Molecular Mechanisms in the Neuronal Ceroid-Lipofuscinoses)

  • 이민영;김동현;윤동호;김한복;박주훈;이환명;김성훈;김성조
    • 한국발생생물학회지:발생과생식
    • /
    • 제13권2호
    • /
    • pp.63-77
    • /
    • 2009
  • 신경리포푸신증(NCLs)은 신경퇴행 축적 질환으로 뇌에 자기형광물질을 포함한 다양한 물질의 축적이 야기되어 발생하며, 노던에필렙시를 제외한 모든 신경포푸신증은 리소즘 축적 질환으로 분류된다. 이러한 신경리포푸신증은 전세계적으로 12,500명 중 1명에게 발생되는 높은 발병 빈도를 나타내며, 그 발병 시기에 따라 영아형, 영유아형, 유년형, 그리고 성인형과 같이 분류된다. 신경리포푸신증이 유발하는 의학적 증상로는 시각 손실, 발작, 간질, 진행성 정신지체등을 야기하여 소아성 치매라는 이야기를 들으며, 증상이 심할 경우 환자가 사망에 이르게 된다. 신경퇴행성 리포푸신증의 원인은 유전자의 돌연변이 때문이라고 알려져 있으며, 일부의 연구를 통해 태아의 발생과정 상 문제를 통해 질병이 야기되는 경우도 관찰이 되고 있으나, 아직 그 분자 발생학적 기전이 명확하게 규명되어 있지 않은 현실이다. 현재 전 세계적으로 많은 연구가 수행되고 있어 그 결과가 주목되는 바이다.

  • PDF

Defective Self-Renewal and Differentiation of GBA-Deficient Neural Stem Cells Can Be Restored By Macrophage Colony-Stimulating Factor

  • Lee, Hyun;Bae, Jae-sung;Jin, Hee Kyung
    • Molecules and Cells
    • /
    • 제38권9호
    • /
    • pp.806-813
    • /
    • 2015
  • Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the glucocerebrosidase gene (GBA), which encodes the lysosomal enzyme glucosylceramidase (GCase). Deficiency in GCase leads to characteristic visceral pathology and lethal neurological manifestations in some patients. Investigations into neurogenesis have suggested that neurodegenerative disorders, such as GD, could be overcome or at least ameliorated by the generation of new neurons. Bone marrowderived mesenchymal stem cells (BM-MSCs) are potential candidates for use in the treatment of neurodegenerative disorders because of their ability to promote neurogenesis. Our objective was to examine the mechanism of neurogenesis by BM-MSCs in GD. We found that neural stem cells (NSCs) derived from a neuronopathic GD model exhibited decreased ability for self-renewal and neuronal differentiation. Co-culture of GBA-deficient NSCs with BM-MSCs resulted in an enhanced capacity for self-renewal, and an increased ability for differentiation into neurons or oligodendrocytes. Enhanced proliferation and neuronal differentiation of GBA-deficient NSCs was associated with elevated release of macrophage colony-stimulating factor (M-CSF) from BM-MSCs. Our findings suggest that soluble M-CSF derived from BM-MSCs can modulate GBA-deficient NSCs, resulting in their improved proliferation and neuronal differentiation.

The Role of Enzyme Replacement Therapy in Fabry Disease in Cardiology Perspective

  • Hongo, Kenichi
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • 제4권1호
    • /
    • pp.21-25
    • /
    • 2018
  • Fabry disease is a hereditary lysosomal storage disorder caused by the reduction or absence of lysosomal enzyme alpha-galactosidase A and the accumulation of glycosphingolipids, such as globotriaosylceramide (Gb3), in various organs, including the heart. The prevention of cardiac involvement in Fabry disease can only be achieved by enzyme replacement therapy (ERT), and the method of assessing the efficacy of ERT should be confirmed. Changes in the electrocardiogram, such as the shortening of PQ interval, prolongation of QTc and repolarization abnormalities as well as left ventricular hypertrophy in voltage criteria, can be used to identify Fabry disease patients; however, the usefulness of electrocardiograms for evaluating the efficacy of ERT is limited. The assessment of left ventricular hypertrophy using echocardiography has been established to evaluate the efficacy of ERT during long-term period. A new technique involving speckled tracking method might be useful for detecting early cardiac dysfunction and identifying the effect of ERT for a relatively short period. The estimation of left ventricular hypertrophy using cardiac magnetic resonance (CMR) is also useful for assessing the efficacy of ERT. Identifying late gadolinium enhancement in CMR may affect the effectiveness of ERT, and the new technique of T1 mapping might be useful for monitoring the accumulation of Gb3 during ERT. Histopathology in cardiac biopsy specimens is another potentially useful method for identifying the accumulation of GB3; however, the use of histopathology to evaluate of the efficacy of ERT is limited because of the invasive nature of an endomyocardial biopsy.

남매에서 가족력을 가진 galactosialidosis 1례 (Galactosialidosis with a Family History in a Sibling)

  • 임선주;남상욱
    • 대한유전성대사질환학회지
    • /
    • 제6권1호
    • /
    • pp.32-39
    • /
    • 2006
  • 저자들은 출생 후 정상적인 발달을 보이다가 생후 6개월부터 의식과 운동 발달의 퇴행을 보이던 13개월 환아에서 효소 검사를 시행하여 ${\beta}$-galactosidase의 결핍을 확인하고 $GM_1$-gangliosidosis type 1으로 진단하였지만, 후에 추가적으로 시행한 효소 검사에서 ${\alpha}$-neuraminidase의 결핍도 발견되어 galactosialidosis로 진단한 증례를 경험하였기에 문헌 고찰과 함께 보고하고자 한다.

  • PDF

A novel GLA mutation in a Korean boy with an early cardiac manifestation of Fabry disease

  • Kwon, Soonhak;Park, Jin-Sung;Jung, Jae Hun;Hwang, Su Kyeong;Kim, Yeo Hyang;Lee, Yun Jeong
    • Journal of Genetic Medicine
    • /
    • 제15권1호
    • /
    • pp.28-33
    • /
    • 2018
  • Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by the deficiency of ${\alpha}$-galactosidase A. Patients with classical FD present acroparesthesia, hypohidrosis, cornea verticillata, disseminated angiokeratoma, and microalbuminuria in childhood, and develop life-threatening renal, cardiac, and cerebrovascular complications typically after the fourth decade of life. To date, more than 700 mutations responsible for FD have been identified in the human GLA gene. Herein, we report a novel GLA mutation, c.1117_1141del25 (p.Gly373Profs*10), identified in an 11-year-old Korean boy with FD presenting early cardiac and neurologic manifestation and in other affected family members. The boy had acroparesthesia, hypohidrosis, cornea verticillata, and left ventricular hypertrophy. His mother and sister also had acroparesthesia. Two males on the mother's side had similar pain and died of unknown causes. The plasma ${\alpha}$-galactosidase A activity (4.1 nmol/hr/mg protein) of the patient was markedly lower than the mean value of the controls. The plasma level of globotriaosylsphingosine was elevated in the patient and all the carriers. We concluded the novel GLA mutation c.1117_1141del25 is a pathogenic mutation for FD, probably related to the early cardiac manifestation of FD.