• 제목/요약/키워드: Lysophosphatidic acids (LPAs)

검색결과 4건 처리시간 0.024초

Atypical formations of gintonin lysophosphatidic acids as new materials and their beneficial effects on degenerative diseases

  • Ji-Hun Kim;Ra Mi Lee;Hyo-Bin Oh;Tae-Young Kim;Hyewhon Rhim;Yoon Kyung Choi;Jong-Hoon Kim;Seikwan Oh;Do-Geun Kim;Ik-Hyun Cho;Seung-Yeol Nah
    • Journal of Ginseng Research
    • /
    • 제48권1호
    • /
    • pp.1-11
    • /
    • 2024
  • Fresh ginseng is prone to spoilage due to its high moisture content. For long-term storage, most fresh ginsengs are dried to white ginseng (WG) or steamed for hours at high temperature/pressure and dried to form Korean Red ginseng (KRG). They are further processed for ginseng products when subjected to hot water extraction/concentration under pressure. These WG or KRG preparation processes affect ginsenoside compositions and also other ginseng components, probably during treatments like steaming and drying, to form diverse bioactive phospholipids. It is known that ginseng contains high amounts of gintonin lysophosphatidic acids (LPAs). LPAs are simple lipid-derived growth factors in animals and humans and act as exogenous ligands of six GTP-binding-protein coupled LPA receptor subtypes. LPAs play diverse roles ranging from brain development to hair growth in animals and humans. LPA-mediated signaling pathways involve various GTP-binding proteins to regulate downstream pathways like [Ca2+]i transient induction. Recent studies have shown that gintonin exhibits anti-Alzheimer's disease and antiarthritis effects in vitro and in vivo mediated by gintonin LPAs, the active ingredients of gintonin, a ginseng-derived neurotrophin. However, little is known about how gintonin LPAs are formed in high amounts in ginseng compared to other herbs. This review introduces atypical or non-enzymatic pathways under the conversion of ginseng phospholipids into gintonin LPAs during steaming and extraction/concentration processes, which exert beneficial effects against degenerative diseases, including Alzheimer's disease and arthritis in animals and humans via LPA receptors.

Quantitative Analysis of Lysophosphatidic Acid in Human Plasma by Tandem Mass Spectrometry

  • Kim, Ho-Hyun;Yoon, Hye-Ran;Pyo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1139-1143
    • /
    • 2002
  • Analysis of lysophosphatidic acids (LPAs) is of clinical importance as they can serve a potential marker for ovarian and other gynecological cancers and obesity. It is critically important to develop a highly sensitive and specific method for the early detection of gynecological cancers to improve the overall outcome of this disease. We have established a novel quantification method of LPAs in human plasma by negative ionization tandem mass spectrometry (MS-MS) using multiple reaction monitoring (MRM) mode without the conventional TLC step. Protein-bound lipids, LPAs in plasma were extracted with methanol : chloroform (2:1) containing LPA C14:0 as an internal standard under acidic condition. Following back extraction with chloroform and water, the centrifuged lower phase was evaporated and reconstituted in methanol. The reconstituted solution was directly injected into electrospray source of MS/MS. For MRM mode, Q1 ions selected were m/z 409, 433, 435, 437 and 457 which corresponds to molecular mass [M-H]- of C16:0, C18:2, C18:1, C18:0 and C20:4 LPA, respectively. Q2 ions selected for MRM were m/z 79, phosphoryl product. Using MS/MS with MRM mode, all the species of LPAs were completely separated from plasma matrix without severe interferences. This method allowed simultaneous detection and quantification of different species of LPAs in a plasma over a linear dynamic range of 0.01-25 ㎛olL-1 . The detection limit of the method was 0.3 pmol/mL, with a correlation coefficient of 0.9983 in most LPAs analyzed. When applied to the plasmas of normal and gynecological cancer patients, this new method differentiated two different groups by way of total LPA level.

Bioactive lipids in gintonin-enriched fraction from ginseng

  • Cho, Hee-Jung;Choi, Sun-Hye;Kim, Hyeon-Joong;Lee, Byung-Hwan;Rhim, Hyewon;Kim, Hyoung-Chun;Hwang, Sung-Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.209-217
    • /
    • 2019
  • Background: Ginseng is a traditional herbal medicine for human health. Ginseng contains a bioactive ligand named gintonin. The active ingredient of gintonin is lysophosphatidic acid C18:2 (LPA C18:2). We previously developed a method for gintonin-enriched fraction (GEF) preparation to mass-produce gintonin from ginseng. However, previous studies did not show the presence of other bioactive lipids besides LPAs. The aim of this study was to quantify the fatty acids, lysophospholipids (LPLs), and phospholipids (PLs) besides LPAs in GEF. Methods: We prepared GEF from white ginseng. We used gas chromatography-mass spectrometry for fatty acid analysis and liquid chromatography-tandem mass spectrometry for PL analysis, and quantified the fatty acids, LPLs, and PLs in GEF using respective standards. We examined the effect of GEF on insulin secretion in INS-1 cells. Results: GEF contains about 7.5% linoleic (C18:2), 2.8% palmitic (C16:0), and 1.5% oleic acids (C18:1). GEF contains about 0.2% LPA C18:2, 0.06% LPA C16:0, and 0.02% LPA C18:1. GEF contains 0.08% lysophosphatidylcholine, 0.03% lysophosphatidylethanolamine, and 0.13% lysophosphatidylinositols. GEF also contains about 1% phosphatidic acid (PA) 16:0-18:2, 0.5% PA 18:2-18:2, and 0.2% PA 16:0-18:1. GEFmediated insulin secretion was not blocked by LPA receptor antagonist. Conclusion: We determined four characteristics of GEF through lipid analysis and insulin secretion. First, GEF contains a large amount of linoleic acid (C18:2), PA 16:0-18:2, and LPA C18:2 compared with other lipids. Second, the main fatty acid component of LPLs and PLs is linoleic acid (C18:2). Third, GEF stimulates insulin secretion not through LPA receptors. Finally, GEF contains bioactive lipids besides LPAs.

Gintonin regulates inflammation in human IL-1β-stimulated fibroblast-like synoviocytes and carrageenan/kaolin-induced arthritis in rats through LPAR2

  • Kim, Mijin;Sur, Bongjun;Villa, Thea;Yun, Jaesuk;Nah, Seung Yeol;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • 제45권5호
    • /
    • pp.575-582
    • /
    • 2021
  • Background: In ginseng, there exists a glycolipoprotein complex with a special form of lipid LPAs called Gintonin. The purpose of this study is to show that Gintonin has a therapeutic effect on rheumatoid arthritis through LPA2 receptors. Methods: Fibroblast-like synoviocytes (FLS) were treated with Gintonin and stimulated with interleukin (IL)-1β. The antioxidant effect of Gintonin was measured using MitoSOX and H2DCFDA experiments. The anti-arthritic efficacy of Gintonin was examined by analyzing the expression levels of inflammatory mediators, phosphorylation of mitogen-activated protein kinase (MAPK) pathways, and translocation of nuclear factor kappa B (NF-κB)/p65 into the nucleus through western blot. Next, after treatment with LPAR2 antagonist, western blot analysis was performed to measure inflammatory mediator expression levels, and NF-κB signaling pathway. Carrageenan/kaolin-induced arthritis rat model was used. Rats were orally administered with Gintonin (25, 50, and 100 mg/kg) every day for 6 days. The knee joint thickness, squeaking score, and weight distribution ratio (WDR) were measured as the behavioral parameters. After sacrifice, H&E staining was performed for histological analysis. Results: Gintonin significantly inhibited the expression of iNOS, TNF-α, IL-6 and COX-2. Gintonin prevented NF-κB/p65 from moving into the nucleus through the JNK and ERK MAPK phosphorylation in FLS cells. However, pretreatment with an LPA2 antagonist significantly reversed these effects of Gintonin. In the arthritis rat model, Gintonin suppressed all parameters that were measured. Conclusion: This study suggests that LPA2 receptor plays a key role in mediating the anti-arthritic effects of Gintonin by modulating inflammatory mediators, the MAPK and NF-κB signaling pathways.