• Title/Summary/Keyword: Lysobacter

Search Result 35, Processing Time 0.021 seconds

A report of 35 unrecorded bacterial species isolated from sediment in Korea

  • Han, Ji-Hye;Baek, Kiwoon;Hwang, Seoni;Nam, Yoon Jong;Lee, Mi-Hwa
    • Journal of Species Research
    • /
    • v.9 no.4
    • /
    • pp.362-374
    • /
    • 2020
  • A total of 35 bacterial strains were isolated from various sediment samples. From 16S rRNA gene sequence similarities higher than 98.7% and the formation of a robust phylogenetic clade with the closest species, it was determined that each strain belonged to independent and predefined bacterial species. No previous official reports have described these 35 species in Korea. The unrecorded species were assigned to 6 phyla, 10 classes, 18 orders, 23 families, and 31 genera. At the genus level, the unrecorded species were affiliated with Terriglobus of the phylum Acidobacteria, as well as with Mycobacterium, Rhodococcus, Kineococcus, Phycicoccus, Agromyces, Cryobacterium, Microbacterium, and Arthrobacter; Catellatospora of the class Actinomycetia; Lacibacter of the class Chitinophagia; Algoriphagus and Flectobacillus of the class Cytophagia; Flavobacterium and Maribacter of the class Flavobacteriia; Bacillus, Cohnella, Fontibacillus, Paenibacillus, Lysynibacillus, and Paenisporosarcina of the class Bacilli; Bradyrhizobium, Gemmobacter, Loktanella, and Altererythrobacter of the class Alphaproteobacteria; Acidovorax of the class Betaproteobacteria; Aliiglaciecola, Cellvibrio, Arenimonas, and Lysobacter of class Gammaproteobacteria; and Roseimicrobium of the class Verrucomicrobia. The selected strains were subjected to further taxonomic characterization, including Gram reaction, cellular and colonial morphology, and biochemical properties. This paper provides detailed descriptions of the 35 previously unrecorded bacterial species.

Optimal Medium Composition Suitable for Enhancement of Biofertilizer's Shelf Life

  • Lee, Yong-Seong;Park, Yun-Suk;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.456-460
    • /
    • 2016
  • Biofertilizers are increasingly available in the market as one of the alternatives to chemical fertilizers. The supply of a high number of viable microorganisms is important for farmers. Lysobacter capsici YS1215 producing chitinases and gelatinases, isolated from soil in Korea, was evaluated for the establishment of an optimal medium condition of its shelf life under an in vitro condition. In this study, the population density of a biofertilizer (L. capsici YS1215) in media containing crab shell and gelatin powder (M1, M2, M3 and M4) was observed to be higher than that of populations grown in TSB (Tryptic soy broth) media (M5, M6 and M7) during experimental period. In addition, the population density at 11 months was over $10^6\;CFU\;mL^{-1}$ in M1, M3 and M4, but under $10^6\;CFU\;mL^{-1}$ in M2, M5, M6 and M7. The best optimal medium for the shelf life was M1 ($2.6{\times}10^6\;CFU\;mL^{-1}$) containing both chitinous and gelatinous materials at 11 months. Therefore, this study provided results of the appropriate medium composition for the enhancement of the shelf life of L. capsici YS1215.

A report of 28 unrecorded bacterial species in Korea, isolated from freshwater and sediment of the Han River watershed in 2020

  • Kim, Mirae;Song, Jaeho;Yu, Dabin;Kim, Younghoo;Bae, Seok Hwan;Park, Miri S.;Lim, Yeonjung;Cho, Jang-Cheon
    • Journal of Species Research
    • /
    • v.10 no.3
    • /
    • pp.227-236
    • /
    • 2021
  • To obtain unrecorded freshwater bacterial species in Korea, water and sediment samples were collected from streams, lakes, and wetland of the Han River watershed in 2020. Approximately 800 bacterial strains were isolated on R2A agar after aerobic or anaerobic incubation, and identified using 16S rRNA gene sequences. A total of 28 strains, with ≥98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, were determined to be unrecorded bacterial species in Korea. The unrecorded bacterial strains were phylogenetically diverse and belonged to four phyla, eight classes, 13 orders, 19 families, and 25 genera. The unreported species were assigned to Acetobacter, Alsobacter, Mesorhizobium, Prosthecomicrobium, and Microvirga of the class Alphaproteobacteria; Vogesella, Formosimonas, Aquincola, Massilia, Acidovorax, and Brachymonas of the class Betaproteobacteria; Pseudoxanthomonas, Thermomonas, Lysobacter, Enterobacter, Kosakonia, and Acinetobacter of the class Gammaproteobacteria; Sulfuricurvum of the class Epsilonproteobacteria; Mycolicibacterium, Agromyces, Phycicoccus, and Microbacterium of the class Actinobacteria; Paenibacillus of the class Bacilli; Clostridium of the class Clostridia; and Flavobacterium of the class Flavobacteriia. The details of the unreported species, including Gram reaction, colony and cell morphology, biochemical characteristics, and phylogenetic position are also provided in the description of the strains.

Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection

  • Min Yang;Ying Qi;Jiani Liu;Penghua Gao;Feiyan Huang;Lei Yu;Hairu Chen
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Soft rot is a widespread, catastrophic disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) that severely damages the production of Amorphophallus spp. This study evaluated the rhizosphere bacterial and fungal communities in Pcc-infected and uninfected plants of two species of Amorphophallus, A. muelleri and A. konjac. Principal component analysis showed that the samples formed different clusters according to the Pcc infection status, indicating that Pcc infection can cause a large number of changes in the bacterial and fungal communities in the Amorphophallus spp. rhizosphere soil. However, the response mechanisms of A. muelleri and A. konjac are different. There was little difference in the overall microbial species composition among the four treatments, but the relative abundances of core microbiome members were significantly different. The relative abundances of Actinobacteria, Chloroflexi, Acidobacteria, Firmicutes, Bacillus, and Lysobacter were lower in infected A. konjac plants than in healthy plants; in contrast, those of infected A. muelleri plants were higher than those in healthy plants. For fungi, the relative abundances of Ascomycota and Fusarium in the rhizosphere of infected A. konjac plants were significantly higher than those of healthy plants, but those of infected A. muelleri plants were lower than those of healthy plants. The relative abundance of beneficial Penicillium fungi was lower in infected A. konjac plants than in healthy plants, and that of infected A. muelleri plants was higher than that of healthy plants. These findings can provide theoretical references for further functional research and utilization of Amorphophallus spp. rhizosphere microbial communities in the future.

Control of Ginseng Damping-Off Disease Using Chitinolytic Bacterial Mixtures (키틴분해미생물을 이용한 인삼 잘록병 방제)

  • Kim, Young Cheol;Chung, Hyun Chae;Bae, Yeoung Seuk;Park, Seur Kee
    • Research in Plant Disease
    • /
    • v.24 no.4
    • /
    • pp.353-358
    • /
    • 2018
  • An effective bioformulation of mixtures of chitin-degrading bacteria has been used successfully to control plant diseases and nematodes. In this study, the bioformulation approach was assessed to control damping-off disease of ginseng. In pot experiments with soils infested with dapming-off pathogens of ginseng, root-drenchings of Chrobacterium sp. C-61, Lysobacterium enzymogenes C-3, and mixture of two bacterial strains grown in chitin minimal medium were signficantly increased emergence of seeds and reduced damping-off disease incidence of seedlings. Efficacy of the bioformulated product depended on the dose and timing of application. In two-year-old ginseng field, the high control efficacies were achieved by soil drenching of two times with an undiluted product or three times with a 10-fold diluted product. In a To-jik nursery (self soil nursery), biocontrol efficacy of the undiluted product against damping-off disease were similar to that of a seed dressing with fungicide, Tolclofos-methyl WP. These results suggest that the bioformulated product containing Chromobacterium sp. C-61 and L. enzymogenes C-3 could be an effective approach to control of ginseng damping-off disease.