• Title/Summary/Keyword: Lymphopoiesis

Search Result 2, Processing Time 0.016 seconds

Impacts of the Spaceflight to the Immune System

  • Sultonov, Doston;Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.31 no.3
    • /
    • pp.73-76
    • /
    • 2021
  • Changes the gravity has a significant affect on the immune system. Astronauts experience the gravity changing during spaceflight, especially when launching and landing they experience hypergravity, and during spaceflight they feel microgravity. Both hypergravity and microgravity has an impact to the immune system, but not the same effect. These impacts have been investigated extensively during spaceflight in astronauts and in model experiments conducted on Earth as well. Astronauts during spaceflight feel the hypergravity, psychological stress, fear, high doses of radiation and microgravity. All these factors and changes may affect immune system directly or indirectly.

Emerging role of Hippo pathway in the regulation of hematopoiesis

  • Inyoung Kim;Taeho Park;Ji-Yoon Noh;Wantae Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.417-425
    • /
    • 2023
  • In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation.