• Title/Summary/Keyword: Lycopericum esculentum

Search Result 2, Processing Time 0.013 seconds

Effects of low dose $\gamma$-ray on the early growth of tomato and the resistance to subsequent high doses of radiation (저선량 $\gamma$선 조사가 토마토의 초기생육과 후속고선량 $\gamma$선 저항성에 미치는 영향)

  • Kim, Jae-Sung;Kim, Jin-Kyu;Back, Myung-Hwa;Kim, Dong-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.3
    • /
    • pp.123-129
    • /
    • 1999
  • Tomato (Lycopericum esculentum $M_{ILL}$ cv. Seokwang and cv. Housemomotaro) seeds were irradiated with the doses of $1{\sim}20$ Gy from $^{60}Co$ $\gamma$-ray source to investigate the effect of the low dose $\gamma$-ray radiation on the early growth and resistance to subsequent high dose of radiation. Germination rate of seeds irradiated with low dose $\gamma$-ray was enhanced in Seokwang cultivar but not in Housemomotaro cultivar. Seedling height increased in 4 Gy and 8 Gy irradiation group of both cultivars. Plant height of Seokwang cultivar was depressed in low dose irradiation group but fresh weight was increased in 2 Gy and 4 Gy irradiation group. In Housemomotaro cultivar, plant height increased in 12 Gy and 20 Gy irradiation group and fresh weight increased in 4 Gy and 20 Gy irradiation group. Growth inhibition of tomato plants by high dose radiation was noticeably reduced by pre-irradiation of low dose radiation. Resistance to subsequent high dose of radiation was enhanced in 2 Gy and 8 Gy Irradiation group of Seokwang cultivar and in 2 Gy and 12 Gy irradiation group of Housemomotaro cultivar.

  • PDF

Construction of Tomato yellow leaf curl virus Clones for Resistance Assessment in Tomato Plants (토마토 작물의 TYLCV 저항성 평가에 이용할 수 있는 감염성 클론 개발)

  • Choi, Seung Kook;Choi, Hak Soon;Yang, Eun Young;Cho, In Sook;Cho, Jeom Deog;Chung, Bong Nam
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.246-254
    • /
    • 2013
  • Five isolates of Tomato yellow leaf curl virus (TYLCV) collected from various regions of Korea were amplified using PCR and determined the sequences of full-length genome, respectively. The PCR-amplified DNA of each TYLCV isolate was introduced into a binary vector to construct infectious clone containing 1.9 copies of the corresponding viral genome. Various cultivars and breeding lines of tomato were inoculated with Agrobacterium tumefaciens harboring infectious clone of each TYLCV isolate to assess resistance against TYLCV. Susceptible cultivar 'Super-sunread' revealed typical yellowing and narrowing of the upper leaves. In contrast, breeding linesTY12, GC9, GC171, and GC173, which contained the TY-1 and/or TY-3 genes that confer resistance against TYLCV in nature, were completely symptomless, suggesting that the lines were resistant to challenging TYLCV isolates. Symptoms of TYLCV in susceptible tomato cultivars are significantly different from those of TYLCV in the resistant tomato cultivars at 30 days after agroinfiltration. Although genomic DNAs of TYLCV were detected from the breeding lines TY12, GC9, GC171, and GC173 using real-time PCR analysis with specific primers, levels of TYLCV DNA accumulation in the resistant breeding lines were much lower than those of TYLCV DNA accumulation in susceptible tomato cultivars. Similar symptom severity and levels of TYLCV DNA accumulation were observed from TYLCV infections mediated by Bemisia tabaci in the resistant and susceptible tomato cultivars. Concentration of agrobacterium did not affect the response of tomato cultivars against TYLCV inoculation. Taken together, these results suggest that TYLCV inoculation via agroinfiltration is as effective as inoculation through Bemisia tabaci and is useful for breeding programs of TYLCV-resistant tomato.