• Title/Summary/Keyword: Lyapunov synthesis approach

Search Result 24, Processing Time 0.03 seconds

Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential

  • Bang, Hyo-Choong;Lee, Kwang-Hyun;Lim, Hyung-Chul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.1
    • /
    • pp.99-109
    • /
    • 2003
  • Attitude control law synthesis for the three-axis attitude maneuver of a flexible spacecraft model is presented in this study. The basic idea is motivated by previous works for the extension into a more general case. The new case includes gravitational gradient torque which has significant effect on a wide range of low earth orbit missions. As the first step, the fully nonlinear dynamic equations of motion are derived including gravitational gradient. The control law design based upon the Lyapunov approach is attempted. The Lyapunov function consists of a weighted combination of system kinetic and potential energy. Then, a set of stabilizing control law is derived from the basic Lyapunov stability theory. The new control law is therefore in a general form partially validating the previous work in some sense.

Composite Adaptive Dual Fuzzy Control of Nonlinear Systems (비선형 시스템의 이원적 합성 적응 퍼지 제어)

  • Kim, Sung-Wan;Kim, Euntai;Park, Mignon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.141-144
    • /
    • 2003
  • A composite adaptive dual fuzzy controller combining the approximate mathematical model, linguistic model description, linguistic control rules and identification modeling error into a single adaptive fuzzy controller is developed for a nonlinear system. It ensures the system output tracks the desired reference value and excites the plant sufficiently for accelerating the parameter estimation process so that the control performances are greatly improved. Using the Lyapunov synthesis approach, proposed controller is analyzed and simulation results verify the effectiveness of the proposed control algorithm.

  • PDF

High Performance of Self Scheduled Linear Parameter Varying Control with Flux Observer of Induction Motor

  • Khamari, Dalila;Makouf, Abdesslam;Drid, Said;Chrifi-Alaoui, Larbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1202-1211
    • /
    • 2013
  • This paper deals with a robust controller for an induction motor (IM) which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV system because of speed and rotor resistance affine dependence. Their values can be estimated on line during systems operations. The simulation and experimental results largely confirm the effectiveness of the proposed control.

Synthesis and Experimental Implementation of DSP Based Backstepping Control of Positioning Systems

  • Chang, Jie;Tan, Yaolong
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2007
  • Novel nonlinear backstepping control with integrated adaptive control function is developed for high-performance positioning control systems. The proposed schemes are synthesized by a systematic approach and implemented based on a modern low-cost DSP controller, TMS320C32. A baseline backstepping control scheme is derived first, and is then extended to include a nonlinear adaptive control against the system parameter changes and load variations. The backstepping control utilizes Lyapunov function to guarantee the convergence of the position tracking error. The final control algorithm is a convenient in the implementation of a practical 32-bit DSP controller. The new control system can achieve superior performance over the conventional nested PI controllers, with improved position tracking, control bandwidth, and robustness against external disturbances, which is demonstrated by experimental results.

TSK Fuzzy Model Based Hybrid Adaptive Control of Nonlinear Systems (비선형 시스템의 TSK 퍼지모델 기반 하이브리드 적응제어)

  • Kim, You-Keun;Kim, Jae-Hun;Hyun, Chang-Ho;Kim, Eun-Tai;Park, Mi-Gnon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.211-216
    • /
    • 2004
  • In this thesis, we present the Takagi-Sugeno-Kang (TSK) fuzzy model based adaptive controller and adaptive identification for a general class of uncertain nonlinear dynamic systems. We use an estimated model for the unknown plant model and use this model for designing the controller. The hybrid adaptive control combined direct and indirect adaptive control based on TSK fuzzy model is constructed. The direct adaptive law can be showed by ignoring the identification errors and fails to achieve parameter convergence. Thus, we propose an TSK fuzzy model based hybrid adaptive (HA) law combined of the tracking error and the model ins error to adjust the parameters. Using a Lyapunov synthesis approach, the proposed hybrid adaptive control is proved. The hybrid adaptive law (HA) is better than the direct adaptive (DA) method without identifying the model ins error in terms of faster and improved tracking and parameter convergence. In order to show the applicability of the proposed method, it is applied to the inverted pendulum system and the performance is verified by some simulation results.

  • PDF

Design of the Combined Direct and Indirect Adaptive Neural Controller Using Fuzzy Rule (퍼지규칙에 의한 직.간접 혼합 신경망 적응제어시스템의 설계)

  • 이순영;장순용
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.603-610
    • /
    • 2000
  • In this paper, the direct and indirect adaptive controller are combined based on the Lyapunov synthesis approach. The Proposed controller is constructed from RBF Neural Network and weighting parameters are adjusted on-line according to some adaptation law. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. In the results, proposed controller has the main advantages of both the direct adaptive controller and the indirect adaptive controller. The effectiveness of the proposed control scheme is demonstrated through simulation results of control for one-link rigid robotics manipulator.

  • PDF

H-infinity Discrete Time Fuzzy Controller Design Based on Bilinear Matrix Inequality

  • Chen M.;Feng G.;Zhou S.S.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2006
  • This paper presents an $H_{\infty}$ controller synthesis method for discrete time fuzzy dynamic systems based on a piecewise smooth Lyapunov function. The basic idea of the proposed approach is to construct controllers for the fuzzy dynamic systems in such a way that a Piecewise smooth Lyapunov function can be used to establish the global stability with $H_{\infty}$ performance of the resulting closed loop fuzzy control systems. It is shown that the control laws can be obtained by solving a set of Bilinear Matrix Inequalities (BMIs). An example is given to illustrate the application of the proposed method.

A CLASS OF ASYMPTOTICALLY STABILIZING STATE FEEDBACK FOR UNCERTAIN NONLINEAR SYSTEMS

  • Hashimoto, Yuuki;Wu, Hansheng;Mizukami, Koichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.271-274
    • /
    • 1995
  • This paper is concerned with the problem of robust stabilization of uncertain single-input and single-output nonlinear systems. Based on the input/output linearization approach for nonlinear state feedback synthesis in conjunction with Lyapunov methods, a stabilizing state feedback controller is proposed. Compared with the controllers reported in the control literature, instead of uniform ultimate boudedness, the controller proposed in this paper can guarantee uniform asymptotic stability of nonlinear systems in the presence of uncertainties. The required information about uncertain dynamics in the system is only that the uncertainties are bounded in Euclidean norm by known functions of the system state.

  • PDF

Direct Adaptive Fuzzy Control with State Observer for Unknown Nonlinear Systems (상태 관측기를 이용한 미지의 비선형 시스템의 직접 적응 퍼지 제어)

  • Kim, Hyung-Joong;Hwang, Young-Ho;Kim, Eung-Seok;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2190-2192
    • /
    • 2003
  • In this paper, a state observer based direct adaptive fuzzy controller for unknown nonlinear dynamical system is presented. The adaptive parameters of the direct adaptive fuzzy controller can be tuned by using a projection algorithm on-line based on the Lyapunov synthesis approach. A maximum control is used to guarantee the robustness of system. A stability analysis of the overall adaptive scheme is discussed based on the sense of Lyapunov. The inverted pendulum simulation example shows that proposed control algorithm can be used for the tracking problem of nonlinear system.

  • PDF

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.