• Title/Summary/Keyword: Lyapunov functions

Search Result 123, Processing Time 0.077 seconds

Angular Self-Sensing Algorithm of Lorentz Force Type Integrated Motor-Bearing System (로렌츠형 자기베어링 내장 전동기의 회전각 추정기)

  • Jeon, Han-Wook;Park, Sung-Ho;Park, Young-Jin;Lee, Chong-Won
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.852-857
    • /
    • 2004
  • In this paper, an angular self-sensing algorithm is proposed and implemented to a Lorentz force type integrated motor-bearing system. It is based on the principle that the flux linkages of stator windings, calculated from the voltage and torque control current, are the functions of the rotor angle. The tracking angular position error is proven to vanish using the Lyapunov stability method, and the experimental results show that the initial error decays within about 5 seconds. It is found that the resolution of the algorithm remains about 1º over the speed range of 100 to 1000 rpm.

  • PDF

An Application of Linear Singular System Theory To Electric Circuits (선형 Singular 시스템 이론의 전기 회로에의 적용)

  • Hoon Kang
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.12
    • /
    • pp.1625-1632
    • /
    • 1988
  • This paper aims not only to introduce the concept of linear singular systems, geometric structure, and feedback but also to provide applications of the multivariable linear singular system theories to electric circuits which may appear in some electronic equipments. The impulsive or discontinuous behavior which is not desirable can be removed by the set of admissible initial conditions. The output-nulling supremal (A,E,B) invariant subspace and the singular system structure algorithm are applied to this double-input double-output electric circuit. The Weierstrass form of the pencil (s E-A) is related to the output-nulling supremal (A,E,B) invariant subspace from which the time domain solutions of the finite and the infinite subsystems are found. The generalized Lyapunov equation for this application with feedback is studied and finally, the use of orthogonal functions in singular systems is discussed.

  • PDF

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

Robust Low-complexity Design for Tracking Control of Uncertain Switched Pure-feedback Systems with Unknown Control Direction (미지의 방향성을 갖는 불확실한 스위치드 순궤환 시스템의 추종 제어를 위한 강인 저 복잡성 설계)

  • Lee, Seung-Woo;Yoo, Sung-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.153-158
    • /
    • 2017
  • This paper investigates a robust low-complexity design problem for tracking control of uncertain switched pure-feedback systems in the presence of unknown control direction. The completely unknown non-affine nonlinearities are assumed to be arbitrarily switched. By combining the nonlinear error transformation technique and Nussbaum-type functions, a robust tracking controller is designed without using any adaptive function approximators. Thus, compared with existing results, the proposed control scheme has the low-complexity property. From Lyapunov stability theory, it is shown that the tracking error remains within the preassigned transient and steady-state error bounds.

A Design of Stable Adaptive Composite Control Systems (안정한 적응 이중 제어시스템의 설계)

  • Zhang, Jeong-Il;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.370-372
    • /
    • 1994
  • In this paper, a stable adaptive composite control system consisting of a PID and a fuzzy controllers is designed to control nonlinear systems. In the fuzzy controller, parameters of membership functions characterizing the linguistic terms change according to some adaptive law. Also, parameters of PID controller change according to some adaptive law. These adaptive laws are based on the Lyapunov synthesis approach. Then, it is proved that the closed-loop system using such an adaptive composite control system is globally stable in the sense that all signals involved are bounded and the tracking error converges to zero. We apply this adaptive composite control system to control a nonlinear system.

  • PDF

Design of an Adaptive Fuzzy Backstepping Controller for a Single-Link Flexible-Joint Robot (단일 축 유연 관절 로봇의 적응 퍼지 백스테핑 제어기 설계)

  • Kim, Young-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.62-70
    • /
    • 2008
  • An adaptive fuzzy backstepping controller is proposed for the motion control for a single-link flexible-joint robot in the presence of parametric uncertainties. Fuzzy logic system is used to approximate the uncertainties of functions and a backstepping technique is employed to deal with the mismatched problem. A compensation controller is also employed to estimates the bound of approximation error so that the shattering effect of the control effort can be reduced. Thus the asymptotic stability of the closed loop control system can be obtained based on a Lyapunov synthesis approach. Numerical simulation results for a single-link flexible-joint robot are included to show the effectiveness of proposed controller.

MATHEMATICAL ANALYSIS OF AN "SIR" EPIDEMIC MODEL IN A CONTINUOUS REACTOR - DETERMINISTIC AND PROBABILISTIC APPROACHES

  • El Hajji, Miled;Sayari, Sayed;Zaghdani, Abdelhamid
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.45-67
    • /
    • 2021
  • In this paper, a mathematical dynamical system involving both deterministic (with or without delay) and stochastic "SIR" epidemic model with nonlinear incidence rate in a continuous reactor is considered. A profound qualitative analysis is given. It is proved that, for both deterministic models, if ��d > 1, then the endemic equilibrium is globally asymptotically stable. However, if ��d ≤ 1, then the disease-free equilibrium is globally asymptotically stable. Concerning the stochastic model, the Feller's test combined with the canonical probability method were used in order to conclude on the long-time dynamics of the stochastic model. The results improve and extend the results obtained for the deterministic model in its both forms. It is proved that if ��s > 1, the disease is stochastically permanent with full probability. However, if ��s ≤ 1, then the disease dies out with full probability. Finally, some numerical tests are done in order to validate the obtained results.

DIFFUSIVE AND STOCHASTIC ANALYSIS OF LOKTA-VOLTERRA MODEL WITH BIFURCATION

  • C.V. PAVAN KUMAR;G. RANJITH KUMAR;KALYAN DAS;K. SHIVA REDDY;MD. HAIDER ALI BISWAS
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.1
    • /
    • pp.11-31
    • /
    • 2023
  • The paper presents a critical analysis of selected topics related to the modeling of interacting species in which prey has nonlinear reproduction, which is in competition with predator. The mathematical model's stochastic stability is investigated. The method of designing appropriate Lyapunov functions is used to identify permanence conditions among the parameters of the model and conditions for the structure to no longer be extinct. The system's two-dimensional diffusive stability is regarded and studied. The system experiences the process of saddle-node bifurcation by varying the death rate of predator parameter. Further effects of parameters that undergo inherent oscillations are numerically investigated, revealing that as the intensity of predation parameter b is increased, the device encounters non-periodic and damped oscillations.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

Permanent Magnet Synchronous Motor Control Algorithm Based on Stability Margin and Lyapunov Stability Analysis

  • Jie, Hongyu;Xu, Hongbing;Zheng, Yanbing;Xin, Xiaoshuai;Zheng, Gang
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1505-1514
    • /
    • 2019
  • The permanent magnet synchronous motor (PMSM) is widely used in various fields and the proportional-integral (PI) controller is popular in PMSM control systems. However, the motor parameters are usually unknown, which can lead to a complicated PI controller design and poor performance. In order to design a PI controller with good performance when the motor parameters are unknown, a control algorithm based on stability margin is proposed in this paper. First of all, based on the mathematical model of the PMSM and the least squares (LS) method, motor parameters are estimated offline. Then based on the estimation values of the motor parameters, natural angular frequency and phase margin, a PI controller is designed. Performance indices including the natural angular frequency and the phase margin are used directly to design the PI controller in this paper. Scalar functions of the d-loop and the q-loop are selected. It can be seen that the designed controller parameters satisfy Lyapunov large scale asymptotic stability theory if the natural angular frequencies of the d-loop and the q-loop are large than 0. Experimental results show that the parameter estimation method has good accuracy and the designed PI controller proposed in this paper has good static and dynamic performances.