• Title/Summary/Keyword: Lyapunov analysis

Search Result 352, Processing Time 0.033 seconds

Tiltrotor Aircraft SCAS Design Using Neural Networks (신경회로망을 이용한 틸트로터 항공기 SCAS 설계)

  • Han, Kwang-Ho;Kim, Boo-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • This paper presents the design and evaluation of a tiltrotor attitude controller. The implemented response type of the command augumentation system is Attitude Command Attitude Hold. The controller architecture can alleviate the need for extensive gain scheduling and thus has the potential to reduce development time. The control algorithm is constructed using the feedback linearization technique. And an on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge tiltrotor aircraft dynamics is applied to augment the attitude control system. The use of Lyapunov stability analysis guarantees boundedness of the tracking error and network parameters. The performance of the controller is evaluated against ADS-33E criteria, using the nonlinear tiltrotor simulation code for Bell TR301 developed by KARI. (Korea Aerospace Research Institute)

Stability on Time Delay Systems: A Survey (시간지연시스템의 안정성에 관한 연구동향)

  • Park, PooGyeon;Lee, Won Il;Lee, Seok Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.3
    • /
    • pp.289-297
    • /
    • 2014
  • This article surveys the control theoretic study on time delay systems. Since time delay systems are infinite dimensional, there are not analytic but numerical solutions on almost analysis and synthesis problems, which implies that there are a tremendous number of approximated solutions. To show how to find such solutions, several results are summarized in terms of two different axes: 1) theoretic tools like integral inequality associated with the derivative of delay terms, Jensen inequality, lower bound lemma for reciprocal convexity, and Wirtinger-based inequality and 2) various candidates for Laypunov-Krasovskii functionals.

A Robust Pitch Control of Wind Turbine Systems (풍력 터빈 시스템의 강인 피치 제어)

  • Han, Myung-Chul;Sung, Chang-Min;Hwang, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.12
    • /
    • pp.1287-1293
    • /
    • 2013
  • In this paper, we consider variable speed wind turbine systems containing uncertain elements. Though PI controller is generally used for pitch control, it cannot guarantee a stability and performance of the complicated wind turbine systems. A robust pitch control scheme is proposed to regulate the electric power output above the rated wind speed. The pitch controller is designed in order to guarantee uniform boundedness and uniform ultimate boundedness based on the bound values of the set where the uncertainties are laid or moves. In order to verify the proposed control scheme, we present stability analysis and simulation results using Matlab/Simulink.

Non-fragile Guaranteed Cost Control of Uncertain Nonlinear Systems with Time-varying Delays in State and Control Input (시변 시간 지연을 갖는 불확실한 비선형 시스템의 비약성 보장 비용 제어)

  • Kim, Jae-Man;Choi, Yoon-Ho;Park, Jin-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.459-465
    • /
    • 2012
  • In this paper, we present a non-fragile guaranteed cost control design method for uncertain nonlinear systems with time varying delays in state and control input, even though the controller gain is perturbed. The uncertain nonlinear term in the systems is norm bounded and the linear matrix inequality(LMI) optimization method is employed as a stability analysis of the systems. We design a robust controller and show the asymptotical stability of uncertain time-varying systems based on Lyapunov method. Also, we guarantee a specific level of performance of the systems. The simulations are carried out to demonstrate the effectiveness of the proposed method.

Adaptive Neural Control for Strict-feedback Nonlinear Systems without Backstepping (순궤환 비선형계통의 백스테핑 없는 적응 신경망 제어기)

  • Park, Jang-Hyun;Kim, Seong-Hwan;Park, Young-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.852-857
    • /
    • 2008
  • A new adaptive neuro-control algorithm for a SISO strict-feedback nonlinear system is proposed. All the previous adaptive neural control algorithms for strict-feedback nonlinear systems are based on the backstepping scheme, which makes the control law and stability analysis very complicated. The main contribution of the proposed method is that it demonstrates that the state-feedback control of the strict-feedback system can be viewed as the output-feedback control problem of the system in the normal form. As a result, the proposed control algorithm is considerably simpler than the previous ones based on backstepping. Depending heavily on the universal approximation property of the neural network (NN), only one NN is employed to approximate the lumped uncertain system nonlinearity. The Lyapunov stability of the NN weights and filtered tracking error is guaranteed in the semi-global sense.

Nonsingular Terminal Sliding Mode Control of Overhead Crane System (오버헤드 크레인 시스템의 비특이성 터미널 슬라이딩 모드 제어)

  • Lee, Sin-Ho;Choi, Yoon-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1683-1684
    • /
    • 2008
  • In this paper, a hierarchical nonsingular terminal sliding mode controller (TSMC) for overhead crane system using nonsingular terminal sliding surface (NTSS) is proposed, which can drive the error to zero in a finite time. Here, singular problem of controller is solved by NTSS. In addition, the controller has the double layer structure because the system is divided into two hierarchical subsystems. In the first layer, the nonsingular terminal sliding surfaces are hierarchically designed for each subsystem, and in the second layer, the whole sliding surface is designed as the linear combination of nonsingular terminal sliding surfaces. The asymptotic stability of the system is verified by Lyapunov analysis. Finally, we carry out simulations on the overhead crane system to illustrate the effectiveness of the proposed control method.

  • PDF

DYNAMIC BEHAVIOUR FOR A NONAUTONOMOUS SMOKING DYNAMICAL MODEL WITH DISTRIBUTED TIME DELAY

  • Samanta, G.P.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.721-741
    • /
    • 2011
  • In this paper we have considered a dynamical mathematical model of the sub-populations of potential smokers (non-smokers), smokers, smokers who temporarily quit smoking, smokers who permanently quit smoking and a class of smoking associated illness by introducing time dependent parameters and distributed time delay to acquire smoking habit. Here, we have established some sufficient conditions on the permanence and extinction of the smoking class in the community by using inequality analytical technique. We have introduced some new threshold values $R_0$ and $R^*$ and further obtained that the smoking class in the community will be permanent when $R_0$ > 1 and the smoking class in the community will be going to extinct when $R^*$ < 1. By Lyapunov functional method, we have also obtained some sufficient conditions for global asymptotic stability of this model. Computer simulations are carried out to explain the analytical findings. The aim of the analysis of this model is to identify the parameters of interest for further study, with a view to informing and assisting policy-maker in targeting prevention and treatment resources for maximum effectiveness.

Fluid Flow and Stirring in a Rectanguar Tank - Effect of the Plate Length - (직사각형 용기 내에서의 유동 및 교반특성 - 중앙평판 길이의 영향 -)

  • 문종춘;서용권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2698-2705
    • /
    • 1994
  • In this paper, the fluid flow and stirring in a rectangular tank focussing on the effect of the plate length is studied numerically and experimentally. the flow model and the method of analysis are the same as those reported previously. The stirring effect changes considerably when the plate length is varied. When the plate is short, the friction at the bottom wall reduces the strength of the vortical flow resulting in a lower stirring effect. When the plate is long, the stirring effect is decreased due to the growth of the regular regions near the lower corners. The stirring effect is the best when the plate length is roughly half the width of the container.

Design of a real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로봇의 실시간 적응제어기 설계)

  • 최근국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.154-161
    • /
    • 1999
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Adaptive Model Reference Control Based on Takagi-Sugeno Fuzzy Models with Applications to Flexible Joint Manipulators

  • Lee, Jongbae;Lim, Joon-hong;Park, Chang-Woo;Kim, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.337-346
    • /
    • 2004
  • The control scheme using fuzzy modeling and Parallel Distributed Compensation (PDC) concept is proposed to provide asymptotic tracking of a reference signal for the flexible joint manipulators with uncertain parameters. From Lyapunov stability analysis and simulation results, the developed control law and adaptive law guarantee the boundedness of all signals in the closed-loop multi-input/multi-output system. In addition, the plant state tracks the state of the reference model asymptotically with time for any bounded reference input signal.