• Title/Summary/Keyword: Luteolin 7-O-glucuronide

Search Result 17, Processing Time 0.024 seconds

Simultaneous Quantitative Determination of Flavone Glycosides in Youngia japonica by High-performance Liquid Chromatography (HPLC에 의한 뽀리뱅이 플라본 배당체 화합물의 동시정량)

  • Nugroho, Agung;Park, Hee-Juhn
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.640-646
    • /
    • 2012
  • This research was attempted to determine the composition of flavone glycosides (luteolin 7-O-glucoside, luteolin 7-O-glucuronide, linarin) in addition to luteolin simultaneously in aerial part of Youngia japonica (Compositae) by high-performance liquid chromatography. The MeOH extract was further fractionated into the three parts, $CHCl_3$ fraction, EtOAc fraction and BuOH fraction, to investigate the contents of the four flavones in the three fractions. The content of luteolin 7-O-glucuronide (10.07 mg/g) was highest in the MeOH extract among those of the flavones. These four compounds were observed to be less than 1.0 mg/g in $CHCl_3$- and EtOAc fractions but relatively high in BuOH fraction.

Antioxidative Flavonoids from Leaves of Carthamus tinctorius

  • Lee, Jun-Young;Chang, Eun-Ju;Kim, Hyo-Jin;Park, Jun-Hong;Choi, Sang-Won
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.313-319
    • /
    • 2002
  • A total of eight flavonoids (1-8), including a novel $quercetin-7-o-(6"-o-acetyl)-{\beta}-D-glucopyranoside$ (6) and seven known flavonoids, luteolin (1), quercetin (2), luteolin $7-o-{\beta}-D-glucopyranoside$ (3), $luteolin-7-o-(6"-Ο-acetyl)-{\beta}-D-glucopyranoside$ (4) quercetin $7-o-{\beta}-D-glucopyranoside$ (5), acacetin 7-o-{\beta}-D-glucuronide (7) and apigenin-6-C-{\beta}-D-glucopyrano $syl-8-C-{\beta}-D-glucopyranoside$ (8), have been isolated from the leaves of the safflower (Carthamus tinctorius L.) and identified on the basis of spectroscopic and chemical studies. The antioxidative activity of these flavonoids was evaluated against 2-deoxyribose degradation and rat liver microsomal lipid peroxidation induced by hydroxyl radicals generated via a Fenton-type reaction. Among these flavonoids, luteolin-acetyl-glucoside (4) and quercetin-acetyl-glucoside (6) showed potent antioxidative activities against 2-deoxyribose degradation and lipid peroxidation in rat liver microsomes. Luteolin (1), quercetin (2), and their corresponding glycosides (3 & 5) also exhibited strong antioxidative activity, while acacetin glucuronide (7) and apigenin-6,8-di-C-glucoside (8) were relatively less active.

Isolation and Identification of Flavonoids from Corn Silk (옥수수수염에 함유된 Flavonoids의 분리 및 동정)

  • Kim, Sun-Lim;Kim, Mi-Jung;Lee, Yu-Young;Jung, Gun-Ho;Son, Beom-Young;Lee, Jin-Seok;Kwon, Young-Up;Park, Yong-Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.4
    • /
    • pp.435-444
    • /
    • 2014
  • This study was carried out to isolate and characterize the flavonoids present in corn silks. Maysin content in the unpollinated corn silks (Kwangpyeongok) showed its highest level at 3 days after silking, and decreased thereafter, while the content of open pollinated silks were consistently decreased after silking. This result indicates that the maysin content is considerably affected by the pollination of corn silk. Unpollinated corn silks were collected with excising, and ethanol employed to extract flavonoids at common temperature for 9 days. After extraction, chlorophyll, lipids etc. were removed with methylene chloride, then submitted to flash column cartridge ($150{\times}40mm$ i.d.) packed with a preparative $RP-C_{18}$ bulk packing material ($125{\AA}$, $55-105{\mu}m$), and monitored at 352 nm. Four fractions, fraction-I, -II, -III, and -IV, were isolated from ethanolic extract of corn silks. Absorption spectrum of fraction I showed its maximum intensity (${\lambda}_{max}$) at 327 nm and 239 nm, fraction-II showed its maximum intensity at 339 nm and 274 nm, fraction-III showed its maximum intensity at 345 nm and 277 nm, and fraction-IV showed its maximum intensity at 352 nm, 270 nm, 257 nm, respectively. On the baisis of ESI micro-TOF analysis, fraction-I was identified as chlorogenic acid (m/z 355, 3-(3,4-dihydroxycinnamoyl) quinic acid, $C_{16}H_{18}O_9$), fraction-II identified as a mixture of chlorogenic acid and luteolin 3'-methyl ether 7-glucuronosyl-($1{\rightarrow}2$)-glucuronide (m/z 653, $C_{28}H_{28}O_{18}$), fraction-III identified as a mixture of chlorogenic acid luteolin 7-O-neohesperidoside (m/z 595, $C_{27}H_{30}O_{15}$), and luteolin 3'-methyl ether 7-glucuronosyl-($1{\rightarrow}2$)-glucuronide, and fraction-IV identified as maysin (m/z 577, 2"-O-${\alpha}$-L-rhamnosyl-6-C-(6-deoxy-xylohexose-4-ulosyl)luteolin, $C_{27}H_{28}O_{14}$), respectively. From the ethanolic extract of corn silks, fraction-I was obtained about 35 mg/100 g F.W., fraction-II was about 48 mg/100 g F.W., fraction-III was about 46 mg/100 g F.W., and fraction-IV was about 138 mg/100 g F.W., respectively.

Phytochemical Analysis of the Phenolic Fat-Suppressing Substances in the Leaves of Lactuca raddeana in 3T3-L1 Adipocytes

  • Nugroho, Agung;Choi, Jae Sue;An, Hyo-Jin;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.42-48
    • /
    • 2015
  • Lactuca raddeana (Compositae) is used to treat obesity and complications due to diabetes. The five phenolic compounds including chlorogenic acid, chicoric acid, luteolin 7-O-glucoside, luteolin 7-O-glucuronide, luteolin were qualitatively identified by LC-ESI-MS analysis. The contents were quantitatively determined by HPLC, under the condition of a Capcell Pak C18 column ($5{\mu}m$, $250mm{\times}4.6mm\;i.d.$) and a gradient elution of 0.05% trifluoroacetic acid (TFA) and 0.05% TFA in $MeOH-H_2O$ (60 : 40). The contents of chicoric acid (100.99 mg/g extract) and luteolin 7-O-glucoside (101. 69 mg/g extract) were high, while those of other three phenolic substances were very low. The 3T3-L1 adipocyte cells treated with chicoric acid and luteolin 7-O-glucuronide significantly suppressed the accumulation of fat, suggesting they are effective against obesity. Since high level of peroxynitrite (ONOO) causes cardiovascular disease in obese patients, its scavenging activity was also studied.

Biotransformation of flavonoid-7-O-glucuronides by $\beta$-glucuronidases

  • Choi, Ran-Joo;Ha, In-Jin;Choi, Jae-Sue;Park, You-Mie;Kim, Yeong-Shik
    • Natural Product Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • $\beta$-Glucuronidases (E.C. 3.2.1.31) from Escherichia coli, Helix pomatia, and bovine liver activity have been investigated on 7-O-glucuronides (baicalin, wogonoside, and luteolin-7-O-glucuronide) and 3-O-glucuronides (quercetin-3-O-glucuronide and kaempferol-3-O-glucuronide). Bovine liver enzyme was not active on any of these substrates. E. coli and H. pomatia enzymes were active on 7-O-glucuronides, however, 3-O-glucuronides were resistant to $\beta$-glucuronidase hydrolysis. These results suggest that glucuronic acid at 7-position is more susceptible to E. coli and H. pomatia $\beta$-glucuronidases than that at 3-position. In addition, the subtle difference of aglycone structure on 7-O-glucuronides affected the preference of enzyme. E. coli enzyme was favorable for the hydrolysis of baicalin, however, H. pomatia enzyme was found to be efficient for the hydrolysis of wogonoside. Both enzymes showed the similar hydrolytic activity towards luteolin-7-O-glucuronide. When the Scutellaria baicalensis crude extract was subjected to enzymatic hydrolysis, baicalin and wogonoside were successfully converted to their aglycone counterparts with H. pomatia at 50 mM sodium bicarbonate buffer pH 4.0. Accordingly, the enzymatic transformation of glycosides may be quite useful in preparing aglycones under mild conditions.

Isolation and Quantitative Analysis of BACE1 Inhibitory Compounds from Cirsium maackii Flower

  • Bhatarrai, Grishma;Seong, Su Hui;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.25 no.4
    • /
    • pp.326-333
    • /
    • 2019
  • The purpose of our study was to evaluate anti-AD potential of Cirsium maackii flowers. MeOH extract, CH2Cl2, EtOAc, and n-BuOH fraction of this flower notably inhibited BACE1 (IC50 = 76.47 ± 1.66, 22.98 ± 1.45, 8.65 ± 0.63, and 72.47 ± 3.04 ㎍/mL, respectively). β-amyrenone (49.70 mg) (1), lupeol acetate (1.43 g) (2), lupeol (1.22 g) (3), lupenone (23.70 mg) (4), β-sitosterol (1.01 g) (6), and β-sitosterol glucoside (13.00 mg) (7) from CH2Cl2, apigenin (100.20 mg) (8), luteolin (19.00 mg) (9), apigenin 7-O-glucuronide methyl ester (21.30 mg) (14), and tracheloside (53.70 mg) (5) from EtOAc, apigenin 5-O-glucoside (11.00 mg) (10), luteolin 5-O-glucoside (11.00 mg) (11) and apigenin 7-O-glucuronide (91.00 mg) (12) from n-BuOH, and luteolin 7-O-glucuronide (22.00 mg) (13) from H2O fraction were isolated. HPLC showed high levels of 8, 9 and 12 in MeOH extract (33.07 ± 0.07, 31. 44 ± 0.17 and 16.89 ± 0.33 mg/g, respectively), EtOAc (161.01 ± 1.78, 96.93 ± 0.34 and 73.38 ± 0.06 mg/g, respectively), and n-BuOH fraction (32.18 ± 0.33, 44.31 ± 0.32 and 105.94 ± 0.36 mg/g, respectively). Since, 3 and 9 are well-known BACE1 inhibitors, the anti-AD activity of C. maackii flower might be attributable to their presence.

Biological activity of flavonoids from Sonchus brachyotus

  • Lee, Jeong Min;Yim, Mi-Jin;Kim, Hyun-Soo;Ko, Seok-Chun;Kim, Ji-Yul;Shin, Jung Min;Lee, Dae-Sung
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.12
    • /
    • pp.428-436
    • /
    • 2021
  • The aim of this study was to isolate and identify secondary metabolites from Sonchus brachyotus and evaluate their antioxidant and anti-inflammatory activities. In this study, we isolated three flavonoids from a 70% EtOH extract by Medium Pressure Liquid Chromatography (MPLC) and prep-High-Performance Liquid Chromatography (HPLC). To evaluate the biological activities (antioxidant and anti-inflammatory) of these flavonoids, their in vitro inhibitory activities against lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) generation, nitric oxide (NO) production, and prostaglandin E2 (PGE2) secretion were determined. We successfully identified three flavonoids, namely luteolin (1), luteolin-7-O-β-D-glucoside (2), and luteolin-7-O-β-D-glucuronide (3) by spectral analyses. Luteolin (1) at 20 ㎍/mL inhibited ROS generation, NO production, and PGE2 secretion by 48.6%, 61.28% and 12.10%, respectively, and luteolin-7-O-β-D-glucoside (2) inhibited NO and PGE2 generation by 67.03% and 20.82%, respectively. Luteolin (1) and luteolin-7-O-β-D-glucoside (2) showed similar anti-inflammatory activities; however, luteolin (1) was observed to be a stronger antioxidant. Besides antioxidant and anti-inflammatory activities, S. brachyotus extract containing luteolin (1) and luteolin-7-O-β-D-glucoside (2) is considered to possess diverse biological activities. The results indicate that S. brachyotus is an edible medicinal plant, which is believed to be significant resource of functional foods.

High-Performance Liquid Chromatographic Quantification and Validation of Luteolin Glycosides from Sonchus brachyotus and Their Peroxynitrite-Scavenging Activity

  • Nugroho, Agung;Kim, Myung-Hoe;Lee, Chan-Mi;Choi, Jae-Sue;Lee, Sang-Hyun;Park, Hee-Juhn
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.39-46
    • /
    • 2012
  • In Korea, the leaves of Sonchus brachyotus (Compositae), an edible mountainous vegetable, are traditionally used to treat hepatitis and hemorrhage and are known to have diuretic action. The aqueous ethanolic extract of this plant was selected in our screening experiment using the peroxynitrite ($ONO_2^-$)-scavenging assay, and the present study was performed to qualitatively and quantitatively identify the active compounds from S. brachyotus and validate the present high-permormance liquid chromatography (HPLC) coupled with ultraviolet absorption detection method based on accuracy, precision and repeatability. Five phenolic substances including the main compound, luteolin $7-O-{\beta}-D$-glucuronopyranoside, as well as chlorogenic acid, luteolin 7-O-rutinoside, luteolin $7-O-{\beta}-D$-glucopyranoside, and luteolin, were found in the aqueous ethanolic extract of S. brachyotus. In the HPLC validation experiment, the linearity of the four compounds was established by $R^2$ values of more than 0.999 within the test ranges, and the recovery rate ranged from 98.2 - 105.3%. Luteolin 7-O-glucuronide was a predominant compound (143 mg/g of extract and 18.3 mg/g of the dry weight of plant material) with a potent peroxynitrite-scavenging effect ($IC_{50}$, $1.02{\pm}0.08{\mu}M$). Luteolin and its three glycosides together with chlorogenic acid were qualitatively and quantitatively determined using an HPLC method validated in the present study.

Antioxidative Constituents from Lycopus lucidus

  • Woo, Eun-Rhan;Piao, Mei-Shan
    • Archives of Pharmacal Research
    • /
    • v.27 no.2
    • /
    • pp.173-176
    • /
    • 2004
  • Three phenolic compounds, rosmarinic acid (1), methyl rosmarinate (2), ethyl rosmarinate (3), and two flavonoids, luteolin (4), luteolin-7-O-$\beta$-D-glucuronide methyl ester (5) were isolated from the aerial part of Lycopus lucidus (Labiatae). Their structures were determined by chemical and spectral analysis. Compounds 1-5 exhibited potent antioxidative activity on the NBT superoxide scavenging assay. The $IC_{50}$ values for compounds 1-5 were 2.59, 1.42, 0.78, 2.83, and 3.05 $\mu\textrm{g}$/mL respectively. In addition, five compounds were isolated from this plant for the first time.

Biological Activity of Phenolic Compounds in Seeds and Leaves of Safflower (Carthamus tinctorius L.)

  • Lee, Won-Jung;Cho, Sung-Hee;Lee, Jun-Young;Park, Sang-Won
    • Proceedings of the Korean Society of Postharvest Science and Technology of Agricultural Products Conference
    • /
    • 2003.04a
    • /
    • pp.22-39
    • /
    • 2003
  • Biological activity of phenolic compounds in seeds and leaves of safflower (Carthamu tinctorius L.) were evaluated using several in vitro and in vivo assays. Six phenolic constituents were isolated from the seeds and identified as N-feruloylserotonia, N- (p-coumaroyl)serotonin, matairesinol, 8′-hydroxyarctigenin, acacetin 7-O-$\beta$-D-glucoside (tilianine) and acacetin. Six phenolic compounds exhibited considerable antioxidative activity, and especially two serotonins showed potent DPPH radical scavenging activity and antiperoxidative activity against rat liver microsomal lipid peroxidation induced by the hydroxyl radical generated via a Fenton-type reaction. Additionally, six phenolic compounds possessed comparable cytotoxicity against three cancer cells, Hela cell, MCF-7 and HepG2 cell, and particularly acacetin and its glycosides had the most potent cytotoxicity. Moreover, we found that feeding safflower seeds attenuated bone loss, and lowered levels of plasma and liver lipids in ovariectomized rats. Serotonins, lignans and flavones stimulated proliferation of the osteoblast-like cells in a dose-dependent manner (10$^{-15}$ ~10$^{-6}$ M), as potently as E$_2$ (17$\beta$-estradiol). Particularly, serotonins were mainly responsible for bone-protecting and lipid lowering effects in ovariectomized rats. Meanwhile, eight flavonoids, including a novel quercetin-7-O-(6"-O-acetyl)-$\beta$-D-glucopyranoside and seven kown flavonoids, luteolin quercetin, luteolin 7-O-$\beta$-D-glucopyranoside, luteolin-7-O-(6"-O-acetyl)-$\beta$-D-gluco-pyranoside, quercetin 7-O- -glucopyranoside, acacetin 7-O-$\beta$-D-glucuronide and apigenin-6-C-$\beta$-D-glucopyranosyl-8-C-$\beta$-D-glucopyranoside were first isolated and identified from safflower leaf. Among these flavonoids, luteolin-acetyl-glucoside and $\beta$quercetin- acetyl-glucoside showed potent antioxidative activities against 2-deoxyribose degradation and lipid peroxidation in rat liver microsomes. Luteolin, quercetin and their corresponding glycosides also exhibited strong antioxidative activity, while acacetin glucuronide and apigenin-6, 8-di-C-glucoside were relatively less active. Finally, changes in phenolic compositions were also determined by HPLC in the safflower seed and leaf during growth stages and roasting process to produce standardized supplement powerds. These results suggest that phenolic compounds in the roasted safflower seed and leaf may be useful as potential sources of therapeutic agents against several pathological disorders such as carcinogenesis, atherosclerosis and osteoporosis.

  • PDF