• Title/Summary/Keyword: Lupeol

Search Result 60, Processing Time 0.025 seconds

Facilitation of Glucose Uptake by Lupeol through the Activation of the PI3K/AKT and AMPK Dependent Pathways in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 PI3K/AKT 및 AMPK 경로의 활성화를 통한 루페올의 포도당 흡수촉진 효과)

  • Lee, Hyun-Ah;Han, Ji-Sook
    • Journal of Life Science
    • /
    • v.32 no.2
    • /
    • pp.86-93
    • /
    • 2022
  • Lupeol is a type of pentacyclic triterpene and has been reported to have pharmacological activities against various diseases; however, the effect of lupeol on glucose absorption has not been elucidated yet. This study aimed to investigate the effect of lupeol on glucose uptake in 3T3-L1 adipocytes. Lupeol significantly facilitated glucose uptake by translocating glucose transporter type 4 (GLUT4) to the plasma membrane of the 3T3-L1 adipocytes, which was related to activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and 5 'adenosine monophosphate-activated protein kinase (AMPK) pathways. In the PI3K/AKT pathway, lupeol stimulates the phosphorylation of insulin receptor substrate 1 (IRS-1), which activates PI3K. Its activation by lupeol promotes the phosphorylation of AKT, but not the atypical protein kinase C isoforms ζ and λ. Lupeol also promoted the phosphorylation of AMPK. The activation of AMPK increased the expressions of the plasma membrane GLUT4 and the intracellular glucose uptake. The increase in the glucose uptake by lupeol was suppressed by wortmannin (PI3K inhibitor) and compound C (AMPK inhibitor) in the 3T3-L1 adipocytes. The results indicate that lupeol can facilitate glucose uptake by increasing insulin sensitivity through the stimulation of the expression of plasma membrane glucose transporter type 4 via the PI3K/AKT and AMPK pathways in the 3T3-L1 adipocytes.

Isolation and Gas Chromatographic Analysis of Lupenone and Lupeol from Sorbus Cortex (정공피로부터 Lupenone과 Lupeol의 분리 및 정량)

  • Lee, Sang-Myoung;Lee, Cheal-Gyu
    • Analytical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.136-140
    • /
    • 1999
  • Lupenone and lupeol, the triterpenoids of Sorbus Cortex, were isolated with silica gel column chromatography and used as the standard substances for the quantitative analysis. The compounds were identified with IR, NMR, EI-MS. They were separated on VA-5MS [(5%-phenyl)methylpolysiloxane, $30m{\times}0.25mm$, $0.25{\mu}m$] column by gas-chromatograph. The contents of lupeone and lupeol in three different samples of Sorbus Cortex were in the range of 0.050~0.056% and 0.772~0.834%, respectively.

  • PDF

Pharmacological Studies of Various Extracts and the Major Constituent, Lupeol, obtained from Hexane Extract of Teclea nobilis in Rodents

  • Al-Rehaily, Adnan J.;El-Tahir, Kamal E.H.;Mossa, Jaber S.;Rafatullah, Syed
    • Natural Product Sciences
    • /
    • v.7 no.3
    • /
    • pp.76-82
    • /
    • 2001
  • The pharmacological activities of the acetonitrile (MeCN), hexane extracts and isolated pure terpenoidal compound Lupeol from the leaves of Teclea nobilis, Delile (TN), on inflammation induced by carrageenan an implantation of cotton pellets in rats; the nociceptive response using writhing and tail flick tests and the antipyretic activity in yeast-induced fever were examined in mice. Oral administration of TN extracts at doses of 150 and 300 mg/ks and lupeol 5 and 10 mg/kg showed a significant anti-inflammatory activity in rats. The extracts of TN and lupeol significantly decreased the number of contractions and stretchings induced by acetic acid and heat-induced pain in mice. The antipyretic effect of extracts and lupeol was also found to be significant. The behavioral observation of animals showed that the hexane extract and lupeol caused CNS depressant activity and did not produce any toxic or lethal effects in animals at various dose levels. The results suggest that the Teclea nobilis extracts and lupeol possesses anti-inflammatory, analgesic and antipyretic activities.

  • PDF

Comprehensive Expression Analysis of Triterpenoid Biosynthesis Genes Using Pac-Bio Sequencing and rnaSPAdes assembly in Codonopsis lanceolata

  • Ji-Nam Kang;Si Myung Lee;Mi-Hwa Choi;Chang-Kug Kim
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.253-253
    • /
    • 2022
  • Codonopsis lanceolata (C. lanceolata) has been widely used in East Asia as a traditional medicine to treat various diseases such as bronchitis, convulsions, cough, obesity, and hepatitis. C. lanceolata belonging to Campanulaceae contains bioactive compounds such as polyphenols, saponins, and steroids. However, despite the pharmacological significance of C. lanceolata, the genetic information of this plant is limited and there are few studies of its transcriptome. In this study, we constructed a unigene set of C. lanceolata using Pac-Bio sequencing. Furthermore, the reads generated from Pac-bio and Illumina sequencing were mixed and assembled using rnaSPAdes. All genes involved in the triterpenoid pathway, a major bioactive compounds of C. lanceolata, were searched from the two unigene sets and the expression profiles of these genes were analyzed. The results showed that lupeol, beta-amyrin, and dammarenediol synthesis genes were activated in the leaves and roots of C. lanceolata. In particular, the expression of genes related to lupeol synthesis was relatively high, suggesting that the main triterpenoid of C. lanceolata is lupeol. Transcriptome studies related to lupeol synthesis in C. lanceolata have been rarely reported. Lupeol has been reported to have pharmacological effects such as anti-inflammatory, anti-cancer, and anti-bacterial. This study suggests the importance of C. lanceolata as a lupeol producing plant.

  • PDF

Suppression of colon cancer by administration of Canavalia gladiata D.C. and Arctium lappa L., Redix extracts in tumor-bearing mice model (종양이식 생쥐모델에서 도두(刀豆), 우방근(牛蒡根) 추출물의 대장암 억제 효과)

  • Jang, Ji-Hye;Ji, Kon-Young;Choi, Hyung-Seok;Yang, Won-Kyung;Kim, Han-Young;Kim, Kun-hoae;Kang, Hyung-Sik;Lee, Young-Cheol;Kim, Seung-Hyung
    • The Korea Journal of Herbology
    • /
    • v.32 no.5
    • /
    • pp.27-38
    • /
    • 2017
  • Objective : In the present study, we examined whether Canavalia gladiata D.C. (CG) and Arctium lappa L., Redix (AL) mixture (CGAL), their components, lupeol and chicoric acid, regulate immune system and suppress the tumor in vitro and in vivo. Methods : LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) were measured after treatment with CG extract (CGE), CGAL, lupeol, chicoric acid and lupeol and chicoric acid mixture (lupeol+CA) in Raw264.7 cell. To determine the effect of CGE on immune responses, immune cell population and IgG production were assessed in mice. To investigate the effect of CGAL and their component on anti-tumor activity, tumor volume and weight were measured, cell cycles and immune cell population were analyzed in MC38 injected tumor bearing mice. Also, NK cell activity was determined in splenocyte isolated from tumor bearing mice. Results : CGE, CGAL, lupeol, chicoric acid and lupeol+CA decreased the LPS-induced ROS and NO production without cell toxicity in RAW264.7 cells. CGE increased the immune cell populations of $CD4^+T$, $CD8^+T$ and macrophages in various immune organ of mice. In tumor bearing mice, CGAL, lupeol, chicoric acid and lupeol+CA suppressed tumor volume and weight. In cell cycle analysis, they decreased the percentages of S phase. In addition, CGAL, lupeol, chicoric acid and lupeol+CA immune cell populations of $CD4^+T$, $CD8^+Tcell$, NK cell and macrophage in tumor as well as NK cell activity. Conclusion : CGAL and its compounds may enhance immune responses and suppress tumor growth, and may be capable of developing health functional foods.

Effects of Lupenone, Lupeol, and Taraxerol Derived from Adenophora triphylla on the Gene Expression and Production of Airway MUC5AC Mucin

  • Yoon, Yong Pill;Lee, Hyun Jae;Lee, Dong-Ung;Lee, Sang Kook;Hong, Jang-Hee;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.210-217
    • /
    • 2015
  • Background: Adenophora triphylla var. japonica is empirically used for controlling airway inflammatory diseases in folk medicine. We evaluated the gene expression and production of mucin from airway epithelial cells in response to lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica. Methods: Confluent NCI-H292 cells were pretreated with lupenone, lupeol or taraxerol for 30 minutes and then stimulated with tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) for 24 hours. The MUC5AC mucin gene expression and production were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Additionally, we examined whether lupenone, lupeol or taraxerol affects MUC5AC mucin production induced by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), the other 2 stimulators of airway mucin production. Results: Lupenone, lupeol, and taraxerol inhibited the gene expression and production of MUC5AC mucin induced by TNF-${\alpha}$ from NCI-H292 cells, respectively. The 3 compounds inhibited the EGF or PMA-induced production of MUC5AC mucin in NCI-H292 cells. Conclusion: These results indicated that lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica regulates the production and gene expression of mucin, by directly acting on airway epithelial cells. In addition, the results partly explain the mechanism of of Adenophora triphylla var. japonica as a traditional remedy for diverse inflammatory pulmonary diseases.

Lupeol Improves TNF-α Induced Insulin Resistance by Downregulating the Serine Phosphorylation of Insulin Receptor Substrate 1 in 3T3-L1 Adipocytes (3T3-L1 지방세포에서 루페올의 IRS-1의 인산화 조절을 통한 TNF-α 유도 인슐린 저항성 개선 효과)

  • Hyun Ah Lee;Ji Sook Han
    • Journal of Life Science
    • /
    • v.33 no.11
    • /
    • pp.859-867
    • /
    • 2023
  • Lupeol is a type of pentacyclic triterpene that has been reported to have therapeutic effects for treating many diseases; however, its effect on insulin resistance is unclear clear. This study examined the inhibitory effect of lupeol on the serine phosphorylation of insulin receptor substrate-1 in insulin resistance-induced 3T3-L1 adipocytes. 3T3-L1 cells were cultured and treated with tumor necrosis factor-α (TNF-α) for 24 hours to induce insulin resistance. Cells treated with different concentrations of lupeol (15 μM or 30 μM) or 100 nM of rosiglitazone were incubated. Then, lysed cells underwent western blotting. Lupeol exhibited a positive effect on the negative regulator of insulin signaling and inflammation-activated protein kinase caused by TNF-α in adipocytes. Lupeol inhibited the activation of protein tyrosine phosphatase-1B (PTP-1B)-a negative regulator of insulin signaling-and c-Jun N-terminal kinase (JNK); it was also an inhibitor of nuclear factor kappa-B kinase (IKK) and inflammation-activated protein kinases. In addition, Lupeol downregulated serine phosphorylation and upregulated tyrosine phosphorylation in insulin receptor substrate-1. Then, the downregulated phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway was activated, the translocation of glucose transporter type 4 was stimulated to the cell membrane, and intracellular glucose uptake increased in the insulin resistance-induced 3T3-L1 adipocytes. Lupeol may improve TNF-α-induced insulin resistance by downregulating the serine phosphorylation of insulin receptor substrate 1 by inhibiting negative regulators of insulin signaling and inflammation-activated protein kinases in 3T3-L1 adipocytes.

Modulating Effect of Lupeol on the Expression Pattern of Apoptotic Markers in 7, 12-Dimethylbenz(a)anthracene Induced Oral Carcinogenesis

  • Manoharan, S.;Palanimuthu, D.;Baskaran, N.;Silvan, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5753-5757
    • /
    • 2012
  • Apoptosis, also known as cell suicide or programmed cell death, removes unwanted and genetically damaged cells from the body. Evasion of apoptosis is one of the major characteristic features of rapidly proliferating tumor cells. Chemopreventive agents inhibit or suppress tumor formation through apoptotic induction in target tissues. The aim of the present study was to investigate the pro-apoptotic potential of lupeol during 7,12-dimethylbenz(a) anthracene (DMBA) induced hamster buccal pouch carcinogenesis. Topical application of 0.5% DMBA three times a week for 14 weeks in the buccal pouches of golden Syrian hamsters resulted in oral squamous cell carcinoma. The expression pattern of apoptotic markers was analyzed using immunohistochemistry (p53, Bcl-2, Bax) and ELISA reader (caspase 3 and 9). In the present study, 100% tumor formation with defects in apoptotic markerexpression pattern was noticed in hamsters treated with DMBA alone. Oral administration of lupeol at a dose of 50mg/kg bw completely prevented the formation oral tumors as well as decreased the expression p53 and Bcl-2, while increasing the expression of Bax and the activities of caspase 3 and 9. The present study thus indicated that lupeol might inhibit DMBA-induced oral tumor formation through its pro-apoptotic potential in golden Syrian hamsters.

Pentacyclic Triterpenoids from Ilex macropoda

  • Kim, Dae-Keun;Nam, Il-Yong;Kim, Jin-Wook;Shin, Tae-Yong;Lim, Jong-Pil
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.617-620
    • /
    • 2002
  • Six compounds were isolated from the twigs of Ilex macropoda. Their structures were elucidated as betulinic acid, lupeol, betulone, betulin, erythrodiol and 11-oxo-erythrodiol by physicochemical and spectroscopic analysis. Among them, lupeol, betulone, erythrodiol and 11-oxo-erythrodiol were isolated for the first time from this plant.

Lupane Triterpenoids from Pyrus pyrifolia

  • Yoo, Ji-Hye;Yang, Ki-Sook
    • Natural Product Sciences
    • /
    • v.18 no.1
    • /
    • pp.13-15
    • /
    • 2012
  • Three lupane type triterpenoids were isolated from the methanol extract of Pyrus pyrifolia fruit peel through repeated silica gel column chromatography. Based on the spectroscopic methods, their structures were determined to be lupeol (1), betulin (2), and betulinic acid (3).