• Title/Summary/Keyword: Lung epithelial cancer

Search Result 97, Processing Time 0.021 seconds

FBW7 Upregulation Enhances Cisplatin Cytotoxicity in Non-small Cell Lung Cancer Cells

  • Yu, Hao-Gang;Wei, Wei;Xia, Li-Hong;Han, Wei-Li;Zhao, Peng;Wu, Sheng-Jun;Li, Wei-Dong;Chen, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6321-6326
    • /
    • 2013
  • Introduction: Lung cancer is extremely harmful to human health and has one of the highest worldwide incidences of all malignant tumors. Approximately 80% of lung cancers are classified as non-small cell lung cancers (NSCLCs). Cisplatin-based multidrug chemotherapy regimen is standard for such lesions, but drug resistance is an increasing problem. F-box/WD repeat-containing protein 7 (FBW7) is a member of the F-box protein family that regulates cell cycle progression, and cell growth and differentiation. FBW7 also functions as a tumor suppressor. Methods: We used cell viability assays, Western blotting, and immunofluorescence combined with siRNA interference or plasmid transfection to investigate the underlying mechanism of cisplatin resistance in NSCLC cells. Results: We found that FBW7 upregulation significantly increased cisplatin chemosensitivity and that cells expressing low levels of FBW7, such as NCI-H1299 cells, have a mesenchymal phenotype. Furthermore, siRNA-mediated silencing or plasmid-mediated upregulation of FBW7 resulted in altered epithelial-mesenchymal transition (EMT) patterns in NSCLC cells. These data support a role for FBW7 in regulating the EMT in NSCLC cells. Conclusion: FBW7 is a potential drug target for combating drug resistance and regulating the EMT in NSCLC cells.

Fine Needle Aspiration Cytology of So-called Sclerosing Hemangioma of the Lung - Report of Two Cases - (폐의 '소위 경화성 혈관종'의 세침 흡인 세포학적 소견 -2예 보고 -)

  • Myong, Na-Hye;Ha, Chang-Won;Cho, Kyung-Ja;Jang, Ja-June
    • The Korean Journal of Cytopathology
    • /
    • v.2 no.1
    • /
    • pp.28-35
    • /
    • 1991
  • So-called sclerosing hemangioma of the lung is a rare benign neoplasm which usually presents with a coin lesion detected through routine chest X-ray. We report two cases showing characteristic cytologic appearances which have been rarely reported. Both cases were young females with coin lesions in the lung. Fine needle aspiration of each case revealed unique but some different cytologic features. Case 1 showed bland-looking polygonal epithelial cells resembling bronchioloalveolar cells haying predominantly papillary configurations with loosely arranged solid sheets or isolated cells. Cytoplasms were plump, cyanophilic, and finely granular, with eccentric nuclei. The nuclei were usually monotonous, round-to-ovoid, and vesicular with a small but conspicuous nucleolus. In comparison to case 1, case 2 revealed largely loose pavement-like solid sheets or clusters rather than papillary patterns in the hemorrhagic background. The size of tumor cells were a little smaller than that of case 1. Bronchioloalveolar carcinoma and papillary adenocarcinoma of metastatic origin were considered to be one of the important differential diagnoses with these cytologic features. Histologically, both cases exhibited findings compatible with so-called sclerosing hemangioma of the lung.

  • PDF

Proteomic Analysis of Differentially Expressed Proteins in Human Lung Cells Following Formaldehyde Treatment

  • Jeon, Yu-Mi;Ryu, Jae-Chun;Lee, Mi-Young
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.4
    • /
    • pp.238-245
    • /
    • 2007
  • Chronic formaldehyde inhalation studies have suggested its relativity to teratogenicity, cancer incidence, neurodegenerative and vascular disorders. Many toxicological data on the formaldehyde toxicity are available, but proteomic results showing complete protein profiles are limited. Therefore, alterations of protein expression patterns upon formaldehyde treatment were investigated in the human lung epithelial cell line. Differentially expressed proteins following formaldehyde treatment were analyzed on 2-dimensional gels, and further analyzed by MALDI-TOF to identify the proteins. Among the identified proteins, 24 proteins were notably up-regulated and 6 proteins were down-regulated. In particular, cytoskeleton related protein named vinculin and Rho GDP dissociation inhibitor which plays a key role in apoptosis increased remarkably.

Circulating Tumor Cell Detection in Lung Cancer Animal Model

  • Chong, Yooyoung;Jung, Yong Chae;Hwang, Euidoo;Cho, Hyun Jin;Kang, Min-Woong;Na, Myung Hoon
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.460-465
    • /
    • 2021
  • Background: Metastasis and recurrence of primary cancer are the main causes of cancer mortality. Disseminated tumor cells refer to cancer cells that cause metastasis from primary cancer to other organs. Several recent studies have suggested that circulating tumor cells (CTCs) are associated with the clinical stage, cancer recurrence, cancer metastasis, and prognosis. There are several methods of isolating CTCs from whole blood; in particular, using a membrane filtration system is advantageous due to its cost-effectiveness and availability in clinical settings. In this study, an animal model of lung cancer was established in nude mice using the human large cell lung cancer cell line H460. Methods: Six-week-old nude mice were used. The H460 lung cancer cell line was injected subcutaneously into the nude mice. Blood samples were obtained from the orbital area before cell line injection, 2 weeks after injection, and 2 weeks after tumor excision. Blood samples were filtered using a polycarbonate 12-well Transwell membrane (Corning Inc., Corning, NY, USA). An indirect immunofluorescence assay was performed with the epithelial cell adhesion molecule antibody. The number of stained cells was counted using fluorescence microscopy. Results: The average size of the tumor masses was 35.83 mm. The stained cells were counted before inoculation, 2 weeks after inoculation, and 2 weeks after tumor excision. Cancer cells generally increased after inoculation and decreased after tumor resection. Conclusion: The CTC detection method using the commercial polycarbonate 12-well Transwell (Corning Inc.) membrane is advantageous in terms of cost-effectiveness and convenience.

Human Lung Insults due Air Pollutant -A Review for Priority Setting in the Research- (대기오염에 의한 폐장조직 손상 -연구방향의 설정을 위한 논의-)

  • 김건열;백도명
    • Journal of environmental and Sanitary engineering
    • /
    • v.7 no.2
    • /
    • pp.95-110
    • /
    • 1992
  • Much progress has been made in understanding the subcellular events of the human lung injuries after acute exposure to environmental air pollutants. Host of those events represent oxidative damages mediated by reactive oxygen species such as superoxide, hydrogen peroxide, and the hydroxy, free radical. Recently, nitric oxide (NO) was found to be endogenously produced by endothelial cells and cells of the reticulo-endothelial system as endothelialderived relaxation factor (EDRF) which is a vasoactive and neurotransmitter substance. Together with superoxide, NO can form another strong oxidant, peroxonitrite. The relative importance of exogenous sources of $N0/N0_2$ and endogenous production of NO by the EDRF producing enzymes in the oxidative stresses to the heman lung has to be elucidated. The exact events leading to chronic irreversible damage are still yet to be known. From chronic exposure to oxidant gases, progressive epithelial and interstitial damages develop. Type I epithelial cells become thicker and cover a smaller average alveolar surface area while thee II cells proliferate instead. Under acute damages, the extent of loss of the alveolar epithelial cell lining, especially type II cells appears to be a good predictor of the ensuing irreversible damage to alveolar compartment. Interstitial matrix undergo remodeling during chronic exposure with increased collagen fibers and interstitial fibroblasts. However, Inany of these changes can be reversed after cessation of exposure. Among chronic lung injuries, genetic damages and repair responses received particular attention in view of the known increased lung cancer risks from exposure to several air pollutants. Heavy metals from foundry emission, automobile traffics, and total suspended particulate, especially polycystic aromatic hydrocarbons have been positively linked with the development of lung cancer. Asbestos in another air pollutant with known risk of lung cancer and mesothelioma, but asbestos fibers are nonauthentic in most bioassays. Studies using the electron spin resonance spin trapping method show that the presence of iron in asbestos accelerates the production of the hydroxy, radical in vitro. Interactions of these reactive oxygen species with particular cellular components and disruption of cell defense mechanisms still await further studies to elucidate the carcinogenic potential of asbestos fibers of different size and chemical composition. The distribution of inhaled pollutants and the magnitude of their eventual effects on the respiratory tract are determined by pollutant-independent physical factors such as anatomy of the respiratory tract and level and pattern of breathing, as well as by pollutant-specific phyco-chemical factors such as the reactivity, solubility, and diffusivity of the foreign gas in mucus, blood and tissue. Many of these individual factors determining dose can be quantified in vitro. However, mathematical models based on these factors should be validated for its integrity by using data from intact human lungs.

  • PDF

Low Expression of the FoxO4 Gene may Contribute to the Phenomenon of EMT in Non-small Cell Lung Cancer

  • Xu, Ming-Ming;Mao, Guo-Xin;Liu, Jian;Li, Jian-Chao;Huang, Hua;Liu, Yi-Fei;Liu, Jun-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4013-4018
    • /
    • 2014
  • Because of its importance in tumor invasion and metastasis, the epithelial-mesenchymal transition (EMT) has become a research focus in the field of cancer. Recently, evidence has been presented that FoxO4 might be involved in EMT. Our study aimed to detect the expression of FoxO4, E-cadherin and vimentin in non-small cell lung cancers (NSCLCs). We also investigated clinical features and their correlations with the markers. In our study, FoxO4, E-cadherin and vimentin were assessed by immunohistochemistry in a tissue microarray (TMA) containing 150 cases of NSCLC. In addition, the expression level of FoxO4 protein was determined by Western blotting. The percentages of FoxO4, E-cadherin and vimentin positive expression in NSCLCs were 42.7%, 38.7% and 55.3%, respectively. Immunoreactivity of FoxO4 was low in NSCLC when compared with paired normal lung tissues. There were significant correlations between FoxO4 and TNM stage (P<0.001), histological differentiation (P=0.004) and lymph node metastasis (P<0.001), but no significant links with age (P=0.323), gender (P=0.410), tumor size (P=0.084), smoking status (P=0.721) and histological type (P=0.281). Our study showed that low expression of FoxO4 correlated with decreased expression of E-cadherin and elevated expression of vimentin. Cox regression analysis indicated FoxO4 to be an independent prognostic factor in NSCLC (P=0.046). These data suggested that FoxO4 might inhibit the process of EMT in NSCLC, and might therefore be a target for therapy.

Investigation of Novel Pharmacological Action of Arctii Fructus and its Compound

  • Hong, Seung-Heon
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.9-9
    • /
    • 2018
  • Arctii Fructus (AF), which contains arctigenin (ARC) as a major constituent, is traditionally used as an anti-inflammatory medicine to treat inflammatory sore throat. Although several studies have proven its anti-inflammatory effects, there have been no reports on its use in inflammation related disorders such as obesity, cancer metastasis, and allergic responses. This study investigated the anti-obesity effect and anti-metastasis effect of AF and ARC. AF and ARC inhibited weight gain by reducing the mass of white adipose tissue in high fat diet (HFD)-induced obese mice. Serum cholesterol levels were also improved by AF and ARC. In in vitro experiments, AF and ARC decreased differentiation of white adipocytes. Furthermore, AF induced differentiation of brown adipocytes, which are able to consume surplus energy through non-shivering thermogenesis. Also, AF and ARC inhibited colon cancer and lung metastasis of colon cancer. They suppressed not only colorectal cancer cell progression by inhibiting cell growth, but also prohibited lung metastasis by regulating epithelial-mesenchymal transition (EMT), migration, and the invasion. These effects were confirmed in an experimental metastasis mouse model. In addition, AF and ARC inhibited mast cell mediated allergic responses. Collectively, our study suggests that AF and ARC might show inhibitory effects on inflammation related diseases, including obesity, cancer, cancer metastasis, and allergic responses.

  • PDF

Paracrine influence of human perivascular cells on the proliferation of adenocarcinoma alveolar epithelial cells

  • Kim, Eunbi;Na, Sunghun;An, Borim;Yang, Se-Ran;Kim, Woo Jin;Ha, Kwon-Soo;Han, Eun-Taek;Park, Won Sun;Lee, Chang-Min;Lee, Ji Yoon;Lee, Seung-Joon;Hong, Seok-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.161-168
    • /
    • 2017
  • Understanding the crosstalk mechanisms between perivascular cells (PVCs) and cancer cells might be beneficial in preventing cancer development and metastasis. In this study, we investigated the paracrine influence of PVCs derived from human umbilical cords on the proliferation of lung adenocarcinoma epithelial cells (A549) and erythroleukemia cells (TF-$1{\alpha}$ and K562) in vitro using $Transwell^{(R)}$ co-culture systems. PVCs promoted the proliferation of A549 cells without inducing morphological changes, but had no effect on the proliferation of TF-$1{\alpha}$ and K562 cells. To identify the factors secreted from PVCs, conditioned media harvested from PVC cultures were analyzed by antibody arrays. We identified a set of cytokines, including persephin (PSPN), a neurotrophic factor, and a key regulator of oral squamous cell carcinoma progression. Supplementation with PSPN significantly increased the proliferation of A549 cells. These results suggested that PVCs produced a differential effect on the proliferation of cancer cells in a cell-type dependent manner. Further, secretome analyses of PVCs and the elucidation of the molecular mechanisms could facilitate the discovery of therapeutic target(s) for lung cancer.

The Antitumor Effect of C-terminus of Hsp70-Interacting Protein via Degradation of c-Met in Small Cell Lung Cancer

  • Cho, Sung Ho;Kim, Jong In;Kim, Hyun Su;Park, Sung Dal;Jang, Kang Won
    • Journal of Chest Surgery
    • /
    • v.50 no.3
    • /
    • pp.153-162
    • /
    • 2017
  • Background: The mesenchymal-epithelial transition factor (MET) receptor can be overexpressed in solid tumors, including small cell lung cancer (SCLC). However, the molecular mechanism regulating MET stability and turnover in SCLC remains undefined. One potential mechanism of MET regulation involves the C-terminus of Hsp70-interacting protein (CHIP), which targets heat shock protein 90-interacting proteins for ubiquitination and proteasomal degradation. In the present study, we investigated the functional effects of CHIP expression on MET regulation and the control of SCLC cell apoptosis and invasion. Methods: To evaluate the expression of CHIP and c-Met, which is a protein that in humans is encoded by the MET gene (the MET proto-oncogene), we examined the expression pattern of c-Met and CHIP in SCLC cell lines by western blotting. To investigate whether CHIP overexpression reduced cell proliferation and invasive activity in SCLC cell lines, we transfected cells with CHIP and performed a cell viability assay and cellular apoptosis assays. Results: We found an inverse relationship between the expression of CHIP and MET in SCLC cell lines (n=5). CHIP destabilized the endogenous MET receptor in SCLC cell lines, indicating an essential role for CHIP in the regulation of MET degradation. In addition, CHIP inhibited MET-dependent pathways, and invasion, cell growth, and apoptosis were reduced by CHIP overexpression in SCLC cell lines. Conclusion: C HIP is capable of regulating SCLC cell apoptosis and invasion by inhibiting MET-mediated cytoskeletal and cell survival pathways in NCI-H69 cells. CHIP suppresses MET-dependent signaling, and regulates MET-mediated SCLC motility.

Methyl Isocyanate and Carcinogenesis: Bridgeable Gaps in Scientific Knowledge

  • Senthilkumar, Chinnu Sugavanam;Sah, Nand Kishore;Ganesh, Narayanan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2429-2435
    • /
    • 2012
  • Methyl isocyanate may have a role in cancer etiology, although the link is unclear. There is evidence in the literature that it can induce cancer in animals but the carcinogenic potency is weak. Pheochromocytoma of adrenal medulla and acinar cell tumors of pancreas have been observed in methyl isocyanate exposed animals. Conversely, emerging data from population-based epidemiological studies are contradictory since there is no evidence of such cancers in methyl isocyanate exposed humans. Recently, we reported a high prevalence of breast and lung cancers in such a population in Bhopal. In vitro findings appearing in the latest scientific literature suggest that genomic instability is caused by methyl isocyanate analogs in lung, colon, kidney, ovary epithelial cells, and that hepatocytes may undergo oncogenic transformation, have obvious implications. The conflicting information prompted us to present this update over the last three decades on methyl isocyanate-induced cancers after an extensive literature search using PubMed. While the pertinent literature remains limited, with a scarcity of strong laboratory analyses and field-epidemiological investigations, our succinct review of animal and human epidemiological data including in vitro evidences, should hopefully provide more insight to researchers, toxicologists, and public health professionals concerned with validation of the carcinogenicity of methyl isocyanate in humans.