• Title/Summary/Keyword: Lung densitometry

Search Result 5, Processing Time 0.018 seconds

CT Densitometry of Normal Tissue and Mass of Lung according to Reconstruction Algorithm (재구성 연산 방식에 따른 흉부의 정상 조직과 종괴의 CT 밀도 측정)

  • Yoon, Han-Sik
    • Journal of radiological science and technology
    • /
    • v.25 no.2
    • /
    • pp.39-45
    • /
    • 2002
  • Fifty patients with lung mass were studied to evaluate the effect of reconstruction algorithm on the CT number of lung mass and normal thoracic tissues. In each examination, the CT image of the lung mass was reconstructed using soft, standard, detail and bone algorithm. The results were shown as follows 1. the average maximum difference of lung mass density on the ROIs using 4 different algorithms was less than 1HU. 2. The maximum difference in the degree of lung mass enhancement was respectively $0.1{\sim}3.2HU$ (ROI $0.5\;cm^2$), $0.1{\sim}2.8HU$(ROI $3\;cm^2$) and $0.0{\sim}2.1$(ROI $6\;cm^2$). 3. The mean density of the normal thoracic tissues was highest in the bone algorithm, though there was no significant between 4 different reconstruction algorithms(p = 1.00).

  • PDF

Four-Dimensional Thoracic CT in Free-Breathing Children

  • Hyun Woo Goo
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.50-57
    • /
    • 2019
  • In pediatric thoracic CT, respiratory motion is generally treated as a motion artifact degrading the image quality. Conversely, respiratory motion in the thorax can be used to answer important clinical questions, that cannot be assessed adequately via conventional static thoracic CT, by utilizing four-dimensional (4D) CT. However, clinical experiences of 4D thoracic CT are quite limited. In order to use 4D thoracic CT properly, imagers should understand imaging techniques, radiation dose optimization methods, and normal as well as typical abnormal imaging appearances. In this article, the imaging techniques of pediatric thoracic 4D CT are reviewed with an emphasis on radiation dose. In addition, several clinical applications of pediatric 4D thoracic CT are addressed in various thoracic functional abnormalities, including upper airway obstruction, tracheobronchomalacia, pulmonary air trapping, abnormal diaphragmatic motion, and tumor invasion. One may further explore the clinical usefulness of 4D thoracic CT in free-breathing children, which can enrich one's clinical practice.

Total Body Fat Estimation by Means of Densitometry and Skinfold Thickness in Middle-Aged Men (밀도법 및 피부두겹법에 의한 중년 남자의 총지방량 측정)

  • Nam, Kwang-Hyun;Shin, Dong-Hoon
    • The Korean Journal of Physiology
    • /
    • v.8 no.1
    • /
    • pp.31-37
    • /
    • 1974
  • Formulas for the prediction of total body fat from skinfold thickness in middle aged men were presented. Hydrostatic weighing was made on 35 middle-aged men $(age:\;40{\sim}50\;years)$ sad corrected for residual volume in lung. Skinfold thickness at four sites, namely, arm, back, waist and abdomen were compared with total fat calculated from the formula given by Keys and Brozek and regression equations were derived. In middle-aged men the observed values were: Body density, 1.07478 ; total body fat, 10.51% body weight; lean body mass, 89.49% body weight; arm skinfold thickness, 4.85mm; back, 10.4 ; waist, 7.72; abdomen, 7.62 and mean skinfold thickness of the four sites, 7.59 mm. The correlations between skinfold thickness and body density were high. The correlations between skinfold thickness and total body fat were also high. The coefficient of correlation between total body fat and arm skinfold, mean skinfold thickness were r=0.839 and r=0.862, respectively. Arm and mean skinfold thicknesses (x, mm) could be used as the representative value for the prediction of total body fat (y, % body weight). The regression equations were: On arm y=2.00x+0.99, With mean skinfold y=1.20x+1.41 The coefficient of correlation between body weight (kg) and mean skinfold thickness was r=0.733. The ratio of mean skinfold thickness (mm) to body weight (kg) in middle-aged men was 0.132.

  • PDF

Superoxide Dismutase Gene Expression in the Endotoxin-Treated Rat Lung (내독소에 의한 백서 폐장의 Superoxide Dismutase 유전자 발현에 관한 연구)

  • Yoo, Chul-Gyu;Suh, Gee-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.3
    • /
    • pp.215-221
    • /
    • 1994
  • Background: It is well known that oxygen free radicals(OFR) play a vital role in the various type of acute lung injury. Among various antioxidant defense mechanisms, the superoxide dismutases(SOD) are thought to be the first line of antioxidant defense by catalyzing the dismutation of two superoxide radicals to yield hydrogen peroxide and oxygen. Eukaryotic cells contain two types of intracellular SOD : cytosolic, dimeric copper/zinc- containing enzyme(CuZnSOD) and mitochondrial, tetrameric manganese-containing enzyme(MnSOD). The purpose of this study is to evaluate the time-dependent gene expression of MnSOD and CuZnSOD in the endotoxin-treated rats, and to compare with the manifestations of LPS-induced acute lung injury in rats. Methods: Total RNA from rat lung was isolated using single step phenol extraction 0, 1, 2, 4, 6, 12, 18, 24 hours after E. coli endotoxin injection(n=3, respectively). RNA was separated by formaldehyde-containing 1.2% agarose gels elctrophoresis, transblotted, baked, prehybridized, and hybridized with $^{32}P$-labeled cDNA probes for rat MnSOD and CuZnSOD, which were kindly donated by Dr. Ho(Duke University, Durham, NC, USA). The probes were labeled by nick translation. Blots were washed and autoradiography were quantitated using laser densitometry. Equivalent amounts of total RNA/gel were assessed by monitoring 28S and 18S rRNA. Results: Endotoxin caused a rise in steady-state MnSOD mRNA levels by 4h with peak mRNA accumulation by 6h. Continued MnSOD mRNA expression was observed at 12h. CuZnSOD mRNA expression was observed from 1h to 24h with peak levels by 18h. Conclusion: These results suggest that SOD palys an important defensive role in the endotoxin-induced acute lung injury in rats.

  • PDF

Quantitative Vertebral Bone Density Seen on Chest CT in Chronic Obstructive Pulmonary Disease Patients: Association with Mortality in the Korean Obstructive Lung Disease Cohort

  • Hye Jeon Hwang;Sang Min Lee;Joon Beom Seo;Ji-Eun Kim;Hye Young Choi;Namkug Kim;Jae Seung Lee;Sei Won Lee;Yeon-Mok Oh
    • Korean Journal of Radiology
    • /
    • v.21 no.7
    • /
    • pp.880-890
    • /
    • 2020
  • Objective: Patients with chronic obstructive pulmonary disease (COPD) are known to be at risk of osteoporosis. The purpose of this study was to evaluate the association between thoracic vertebral bone density measured on chest CT (DThorax) and clinical variables, including survival, in patients with COPD. Materials and Methods: A total of 322 patients with COPD were selected from the Korean Obstructive Lung Disease (KOLD) cohort. DThorax was measured by averaging the CT values of three consecutive vertebral bodies at the level of the left main coronary artery with a round region of interest as large as possible within the anterior column of each vertebral body using an in-house software. Associations between DThorax and clinical variables, including survival, pulmonary function test (PFT) results, and CT densitometry, were evaluated. Results: The median follow-up time was 7.3 years (range: 0.1-12.4 years). Fifty-six patients (17.4%) died. DThorax differed significantly between the different Global Initiative for Chronic Obstructive Lung Disease stages. DThorax correlated positively with body mass index (BMI), some PFT results, and the six-minute walk distance, and correlated negatively with the emphysema index (EI) (all p < 0.05). In the univariate Cox analysis, older age (hazard ratio [HR], 3.617; 95% confidence interval [CI], 2.119-6.173, p < 0.001), lower BMI (HR, 3.589; 95% CI, 2.122-6.071, p < 0.001), lower forced expiratory volume in one second (FEV1) (HR, 2.975; 95% CI, 1.682-5.262, p < 0.001), lower diffusing capacity of the lung for carbon monoxide corrected with hemoglobin (DLCO) (HR, 4.595; 95% CI, 2.665-7.924, p < 0.001), higher EI (HR, 3.722; 95% CI, 2.192-6.319, p < 0.001), presence of vertebral fractures (HR, 2.062; 95% CI, 1.154-3.683, p = 0.015), and lower DThorax (HR, 2.773; 95% CI, 1.620-4.746, p < 0.001) were significantly associated with all-cause mortality and lung-related mortality. In the multivariate Cox analysis, lower DThorax (HR, 1.957; 95% CI, 1.075-3.563, p = 0.028) along with older age, lower BMI, lower FEV1, and lower DLCO were independent predictors of all-cause mortality. Conclusion: The thoracic vertebral bone density measured on chest CT demonstrated significant associations with the patients' mortality and clinical variables of disease severity in the COPD patients included in KOLD cohort.