• Title/Summary/Keyword: Lung cancer cells

Search Result 1,011, Processing Time 0.037 seconds

Monitoring microRNAs Using a Molecular Beacon in CD133+/CD338+ Human Lung Adenocarcinoma-initiating A549 Cells

  • Yao, Quan;Sun, Jian-Guo;Ma, Hu;Zhang, An-Mei;Lin, Sheng;Zhu, Cong-Hui;Zhang, Tao;Chen, Zheng-Tang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.161-166
    • /
    • 2014
  • Lung cancer is the most common causes of cancer-related deaths worldwide, and a lack of effective methods for early diagnosis has greatly impacted the prognosis and survival rates of the affected patients. Tumor-initiating cells (TICs) are considered to be largely responsible for tumor genesis, resistance to tumor therapy, metastasis, and recurrence. In addition to representing a good potential treatment target, TICs can provide clues for the early diagnosis of cancer. MicroRNA (miRNA) alterations are known to be involved in the initiation and progression of human cancer, and the detection of related miRNAs in TICs is an important strategy for lung cancer early diagnosis. As Hsa-miR-155 (miR-155) can be used as a diagnostic marker for non-small cell lung cancer (NSCLC), a smart molecular beacon of miR-155 was designed to image the expression of miR-155 in NSCLC cases. TICs expressing CD133 and CD338 were obtained from A549 cells by applying an immune magnetic bead isolation system, and miR-155 was detected using laser-scanning confocal microscopy. We found that intracellular miR-155 could be successfully detected using smart miR-155 molecular beacons. Expression was higher in TICs than in A549 cells, indicating that miR-155 may play an important role in regulating bio-behavior of TICs. As a non-invasive approach, molecular beacons could be implemented with molecular imaging to diagnose lung cancer at early stages.

Inhibitory Effect of Celeriac Extract on Cancer Cell Proliferation (셀러리악 추출물의 암세포 증식 억제 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.179-183
    • /
    • 2021
  • This study was carried out examine the effect of Celeriac Extract, which contains various anticancer ingredients, on the proliferation inhibition of human-derived cancer cells and the degree of inhibition. The five cell lines used in the experiment were lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, breast cancer cells MCF-7, and liver cancer cells SNU-182. All cancer cells derived from the human body were used, and the inhibition of cancer cell proliferation with Celeriac Extract 10ug/mL, 100ug/mL, and 1000ug/mL was measured using the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Celeriac Extract 1000ug/mL showed significant proliferation inhibition in lung cancer cells A549, prostate cancer cells DU-145, uterine cancer cells HeLa, and liver cancer cells SNU-182, and showed a concentration dependence. However, only a concentration-dependent decrease was observed in breast cancer cells MCF-7.In conclusion, it can be seen that the cell proliferation inhibition mechanisms of Celeriac Extract using various human-derived cancer cell lines provide the potential for cancer prevention and therapeutic development.

Immunocell Therapy for Lung Cancer: Dendritic Cell Based Adjuvant Therapy in Mouse Lung Cancer Model (폐암의 면역세포 치료: 동물 모델에서 수지상 세포를 이용한 Adjuvant Therapy 가능성 연구)

  • Lee, Seog-Jae;Kim, Myung-Joo;In, So-Hee;Baek, So-Young;Lee, Hyun-Ah
    • IMMUNE NETWORK
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • Background: The anti-tumor therapeutic effect of autologous tumor cell lysate pulseddendritic cells (DCs) was studied for non-immunogenic and immune suppressive lung cancer model. To test the possibility as an adjuvant therapy, minimal residual disease model was considered in mouse in vivo experiments. Methods: Syngeneic 3LL lung cancer cells were inoculated intravenously into the C57BL/6 mouse. Autologous tumor cell (3LL) or allogeneic leukemia cell (WEHI-3) lysate pulsed-DCs were injected twice in two weeks. Intraperitoneal DC injection was started one day (MRD model) after tumor cell inoculation. Two weeks after the final DC injection, tumor formation in the lung and the tumor-specific systemic immunity were observed. Tumor-specific lymphocyte proliferation and the IFN-${\gamma}$ secretion were analyzed for the immune monitoring. Therapeutic DCs were cultured from the bone marrow myeloid lineage cells with GM-CSF and IL-4 for 7 days and pulsed with tumor cell lysate for 18 hrs. Results: Compared to the saline treated group, tumor formation was suppressed in 3LL tumor cell lysate pulsed-DC treated group, while 3LL-specific immune stimulation was minimum. WEHI-3-specific immune stimulation occurred in WEHI-3 lysate-pulsed DC treated group, which had no correlation with tumor regression. Conclusion: The data suggest the possible anti-tumor effect of cultured DCs as an adjuvant therapy for minimal residual disease state of lung cancer. The significance of immune modulation in DC therapy including the possible involvement of NK cell as well as antigen-specific cytotoxic T cell activity induction was discussed.

High expression of RAD51 promotes DNA damage repair and survival in KRAS-mutant lung cancer cells

  • Hu, Jinfang;Zhang, Zhiguo;Zhao, Lei;Li, Li;Zuo, Wei;Han, Lei
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.151-156
    • /
    • 2019
  • RAD51 recombinase plays a critical role in homologous recombination and DNA damage repair. Here we showed that expression of RAD51 is frequently upregulated in lung cancer tumors compared with normal tissues and is associated with poor survival (hazard ratio (HR) = 2, P = 0.0009). Systematic investigation of lung cancer cell lines revealed higher expression of RAD51 in KRAS mutant (MT) cells compared to wildtype (WT) cells. We further showed that MT KRAS, but not WT KRAS, played a critical role in RAD51 overexpression via MYC. Moreover, our results revealed that KRAS MT cells are highly dependent on RAD51 for survival and depletion of RAD51 resulted in enhanced DNA double strand breaks, defective colony formation and cell death. Together, our results suggest that mutant KRAS promotes RAD51 expression to enhance DNA damage repair and lung cancer cell survival, suggesting that RAD51 may be an effective therapeutic target to overcome chemo/radioresistance in KRAS mutant cancers.

Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway

  • Park, Seong-Min;Seo, Eun-Hye;Bae, Dong-Hyuck;Kim, Sung Soo;Kim, Jina;Lin, Weiwei;Kim, Kyung-Hee;Park, Jong Bae;Kim, Yong Sung;Yin, Jinlong;Kim, Seon-Young
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.604-616
    • /
    • 2019
  • Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS-1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.

Afatinib Mediates Autophagic Degradation of ORAI1, STIM1, and SERCA2, Which Inhibits Proliferation of Non-Small Cell Lung Cancer Cells

  • Kim, Mi Seong;Kim, So Hui;Yang, Sei-Hoon;Kim, Min Seuk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.85 no.2
    • /
    • pp.147-154
    • /
    • 2022
  • Background: The expression of calcium signaling pathway molecules is altered in various carcinomas, which are related to the proliferation and altered characteristics of cancer cells. However, changes in calcium signaling in anti-cancer drug-resistant cells (bearing a T790M mutation in epidermal growth factor receptor [EGFR]) remain unclear. Methods: Afatinib-mediated changes in the level of store-operated Ca2+ entry (SOCE)-related proteins and intracellular Ca2+ level in non-small cell lung cancer cells with T790M mutation in the EGFR gene were analyzed using western blot and ratiometric assays, respectively. Afatinib-mediated autophagic flux was evaluated by measuring the cleavage of LC3B-II. Flow cytometry and cell proliferation assays were conducted to assess cell apoptosis and proliferation. Results: The levels of SOCE-mediating proteins (ORAI calcium release-activated calcium modulator 1 [ORAI1], stromal interaction molecule 1 [STIM1], and sarco/endoplasmic reticulum Ca2+ ATPase [SERCA2]) decreased after afatinib treatment in non-small cell lung cancer cells, whereas the levels of SOCE-related proteins did not change in gefitinib-resistant non-small cell lung cancer cells (PC-9/GR; bearing a T790M mutation in EGFR). Notably, the expression level of SOCE-related proteins in PC-9/GR cells was reduced also responding to afatinib in the absence of extracellular Ca2+. Moreover, extracellular Ca2+ influx through the SOCE was significantly reduced in PC-9 cells pre-treated with afatinib than in the control group. Additionally, afatinib was found to decrease the level of SOCE-related proteins through autophagic degradation, and the proliferation of PC-9GR cells was significantly inhibited by a lack of extracellular Ca2+. Conclusion: Extracellular Ca2+ plays important role in afatinib-mediated autophagic degradation of SOCE-related proteins in cells with T790M mutation in the EGFR gene and extracellular Ca2+ is essential for determining anti-cancer drug efficacy.

Relationship between Cancer Stem Cell Marker CD133 and Cancer Germline Antigen Genes in NCI-H292 Lung Cancer Cells

  • Ko, Taek Yong;Kim, Jong In;Lee, Sang Ho
    • Journal of Chest Surgery
    • /
    • v.53 no.1
    • /
    • pp.22-27
    • /
    • 2020
  • Background: Previous studies have shown that lung cancer stem cells express CD133 and that certain cancer stem cells express cancer germline antigens (CGAs). The transcriptional regulation of CD133 is complicated and poorly understood. We investigated CD133 and CGA expression in a non-small cell lung cancer cell line. Methods: The expression levels of CD133 and CGAs (MAGE-6, GAGE, SSX, and TRAG-3) were measured in an NCI-H292 lung cancer cell line. The methylation status of the CD133 gene promoter region was analyzed. The expression levels and promoter methylation statuses of CD133 and CGAs were confirmed by treatment with the demethylating agent 5-aza-2'-deoxycytidine (ADC). Results: After treatment with ADC, CD133 expression was no longer detected. MAGE-6 and TRAG-3 were detected before ADC treatment, while GAGE and SSX were not detected. ADC treatment upregulated MAGE-6 and TRAG-3 expression, while GAGE expression was still undetected after treatment, and only weak SSX expression was observed. GAGE expression was not correlated with expression of CD133, while the levels of expression of MAGE-6, TRAG-3, and SSX were inversely correlated with CD133 expression. Conclusion: These results showed that CD133 expression can be regulated by methylation. Thus, the demethylation of the CD133 promoter may compromise the treatment of lung cancer by inactivating cancer stem cells and/or activating CGAs.

Circulating Tumor Cell Detection in Lung Cancer Animal Model

  • Chong, Yooyoung;Jung, Yong Chae;Hwang, Euidoo;Cho, Hyun Jin;Kang, Min-Woong;Na, Myung Hoon
    • Journal of Chest Surgery
    • /
    • v.54 no.6
    • /
    • pp.460-465
    • /
    • 2021
  • Background: Metastasis and recurrence of primary cancer are the main causes of cancer mortality. Disseminated tumor cells refer to cancer cells that cause metastasis from primary cancer to other organs. Several recent studies have suggested that circulating tumor cells (CTCs) are associated with the clinical stage, cancer recurrence, cancer metastasis, and prognosis. There are several methods of isolating CTCs from whole blood; in particular, using a membrane filtration system is advantageous due to its cost-effectiveness and availability in clinical settings. In this study, an animal model of lung cancer was established in nude mice using the human large cell lung cancer cell line H460. Methods: Six-week-old nude mice were used. The H460 lung cancer cell line was injected subcutaneously into the nude mice. Blood samples were obtained from the orbital area before cell line injection, 2 weeks after injection, and 2 weeks after tumor excision. Blood samples were filtered using a polycarbonate 12-well Transwell membrane (Corning Inc., Corning, NY, USA). An indirect immunofluorescence assay was performed with the epithelial cell adhesion molecule antibody. The number of stained cells was counted using fluorescence microscopy. Results: The average size of the tumor masses was 35.83 mm. The stained cells were counted before inoculation, 2 weeks after inoculation, and 2 weeks after tumor excision. Cancer cells generally increased after inoculation and decreased after tumor resection. Conclusion: The CTC detection method using the commercial polycarbonate 12-well Transwell (Corning Inc.) membrane is advantageous in terms of cost-effectiveness and convenience.

Expression of Tiam1 in Lung Cancer and its Clinical Significance

  • Wang, Hong-Ming;Wang, Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.2
    • /
    • pp.613-615
    • /
    • 2012
  • The aim of this study was to ana1yze T-cell lymphoma invasion and metastasis-inducing factor 1 (Tiam1) expression in 1ung cancer patients. A total of 204 patients with lung cancer tissue lesions were enrolled in the present study, along with 40 cases of normal lung tissue and 40 of normal fetal lung tissue. Tiam1 protein expression level was determined using intensity quantitative analysis, for comparison in lung cancer, metastatic, normal lung, and fetal lung tissue. The positive unit (PU) of Tiam1 was $13.5{\pm}5.42$ in lung cancer,$5.67{\pm}1.56$ in norma1 epithelial cells, and $5.89{\pm}1.45$ in fetal lung epithelial cells. The value in the lung cancer tissue was significantly higher than that in the normal lung tissue and the fetal lung tissue (P<0.01). The Tiam1 PU values with lymph node metastasis and without 1ymph node metastasis were $15.2{\pm}4.34$ and $12.5{\pm}4.23$, respectively, and the difference was statistically significant (P<0.05). The Tiam1 PU values in different tumor, nodes, metastasis (TNM) stages, III-IV period, and I-II phase were $14.7{\pm}4.14$ and $11.0{\pm}5.34$ (P<0.05). A correlation was found between Tiam1 expression and the age of patient, tumor size, tumor type, and tumor differentiation. Tiam1 protein expression in the lung tumor tissue is significantly higher than that in the normal lung tissue and fetal lung tissue. Tiam1 expression may be closely related to lung cancer development and metastasis.

Snake Venom synergized Cytotoxic Effect of Natural Killer Cells on NCI H358 Human Lung Cancer Cell Growth through Induction of Apoptosis

  • Oh, Jae Woo;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.33 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • Objectives : I investigated whether snake venom can synergistically strengthen the cytotoxic effects of NK-92 cells, and enhance the inhibition of the growth of lung cancer cells including NCI-H358 through the induction of death receptor dependent extrinsic apoptosis. Methods : Snake venom toxin inhibited cell growth of NCI-H358 Cells and exerted non influence on NK-92 cell viability. Moreover, when they were co-cultured with NK cells and concomitantly treated with $4{\mu}g/m{\ell}$ of snake venom toxin, more influence was exerted on the inhibition of growth of NCI-H358 cells than BV or NK cell co-culture alone. Results : The expression of Fas, TNFR2 and DR3 and in NCI-H358 lung cancer cells was significantly increased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells alone. Coincidentally, Bax, caspase-3 and caspase-8 - expressions of pro-apoptotic proteins in the extrinsic apoptosis pathway, demonstrated significant increase. However, in anti-apoptotic NF-${\kappa}B$ activities, activity of the signal molecule was significantly decreased by co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells or snake venom toxin treated by NCIH358 alone. Meanwhile, in terms of NO generation, there is a significant increase, in co-culture of NK-92 cells with NCI-H358 cells as well as the co-culture of NK-92 cells and concomitant treatment of $4{\mu}g/m{\ell}$ of snake venom toxin. However, no synergistic increase of NO generation was shown in co-culture of NK-92 cells and treatment of $4{\mu}g/m{\ell}$ of snake venom toxin, compared to co-culture of NK-92 cells with NCI-H358 cells. Conclusion : Consequently, this data provides that snake venom toxin could be useful candidate compounds to suppress lung cancer growth along with the cytotoxic effect of NK-92 cells through extrinsic apoptosis.