• Title/Summary/Keyword: Lunar landing gear

Search Result 6, Processing Time 0.039 seconds

Development Trend of Shock-Absorbing Landing gear for Lunar Lander (달착륙선 충격흡수 착륙장치 개발동향)

  • Kim, Won-Seock;Kim, Sun-Won;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.119-129
    • /
    • 2011
  • The soft landing of a lunar lander after the entrance of lunar orbit is an essential prerequisite for the accomplishment of the lander's lunar mission. During the landing process of a lunar lander, efficient shock absorption and stability maintenance are indispensible technology to protect payloads. Therefore, the landing gear is a crucial structural component of a lunar lander, it has to absorb the kinetic energy associated with touchdown and support the static load of the landing module in an upright position. In this paper, various landing gears of lunar landers which are being developed as well as which had been successfully landed on the moon surface are investigated. In the end, the Korean lunar lander, which is being designed for preliminary development model, is presented as an example of the lunar lander development.

  • PDF

Development of KAU Mechanical Lunar Simulants and Drop Test of Lunar Landing Gears (KAU 기계적 달 복제토 개발 및 달착륙선 착륙장치의 낙하시험)

  • Yoo, Seok-Ho;Kim, Hyun-Duk;Lim, Jae Hyuk;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1037-1044
    • /
    • 2014
  • In this study, we designed a drop test system considering lunar surface environment and tested landing gear of experimental lunar lander. The lunar lander would be landed at soil place for soft landing. When the lunar lander touches down, the acceleration of the lander is largely affected by mechanical characteristics of the lunar soil. Accordingly, a drop test using lunar soil is needed to verify the performance of the lunar landing gear. Because the lunar soil is not available generally, we developed a lunar simulant KAUMLS(Korea Aerospace University Mechanical Luna Simulant) based on mechanical properties of the lunar soil of NASA's LUNA PROJECT. In addition, drop tests on steel plate and dry sand are performed to evaluate impact characteristics by the surface environment.

Development of a Structure for Lunar Lander Demonstrator (달착륙선 지상시험모델의 구조체 개발)

  • Son, Taek-Joon;Na, Kyung-Su;Lim, Jae Hyuk;Kim, Kyung-Won;Hwang, Do-Soon
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.213-220
    • /
    • 2013
  • Korean Lunar Explorer is planned to be launched in the 2020s according to national space development strategy. The Lunar Explorer will be developed as two unmanned light weight models: a lunar orbiter and a lunar lander. The Lunar Explorer's structure should be designed to have light weight due to constraints from launcher as well as to provide structural safety against launch load, in-orbit condition and landing condition and to serve accommodation space for mission equipment. Core technology related to structural development of lunar explorer should be developed in advance. Especially, for lunar lander, technology for developing landing gear which enables lander to land safely on lunar surface is required essentially. This paper deals with structural development of lunar lander ground test model including design, manufacturing and test.

Evaluation of Landing Stability of Lunar Lander Considering Various Landing Conditions (다양한 착륙환경변수를 고려한 달착륙선 착륙안정성 평가)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.124-132
    • /
    • 2018
  • In this paper, landing stability evaluation of lunar lander considering various landing conditions was performed. The status of landing stability of the lunar lander is classified into stable landing, conditionally stable landing due to sliding and unstable landing due to tip-over. In particular, the quasi-static tip-over equation was rearranged considering the phenomena of lowering the center of gravity and extension of foot-pad interval of the landing gear. These results were compared by finite element model analysis results using a commercial software ABAQUS and its validity and accuracy were verified. The verified finite element model was used for examining the tendency of various environmental variables such as landing conditions, friction coefficient, lateral speed and slope of ground.

Development of a Coarse Lunar Soil Model Using Discrete Element Method (이산요소법을 이용한 성긴 달토양 수치해석모델 개발)

  • Jeong, Hyun-Jae;Lim, Jae Hyuk;Kim, Jin-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.1
    • /
    • pp.26-34
    • /
    • 2019
  • In this paper, a coarse lunar soil model is developed using discrete element method and its computed physical properties are compared with those of the actual lunar soil for its validation. The surface of the actual moon consists of numerous craters and rocks of various sizes, and it is covered with fine dry soil which seriously affects the landing stability of the lunar lander. Therefore, in consideration of the environment of the lunar regolith, the lunar soil is realized using discrete element method. To validate the coarse model of lunar soil, the simulations of the indentation test and the direct shear test are performed to check the physical properties(indentation depth, cohesion stress, internal friction angle). To examine the performance of the proposed model, the drop simulation of finite element model of single-leg landing gear is performed on proposed soil models with different particle diameters. The impact load delivered to the strut of the lander is compared to test results.