• Title/Summary/Keyword: Lunar astronomy

Search Result 123, Processing Time 0.027 seconds

An Earth-Moon Transfer Trajectory Design and Analysis Considering Spacecraft's Visibility from Daejeon Ground Station at TLI and LOI Maneuvers

  • Woo, Jin;Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.3
    • /
    • pp.195-204
    • /
    • 2010
  • The optimal Earth-Moon transfer trajectory considering spacecraft's visibility from the Daejeon ground station visibility at both the trans lunar injection (TLI) and lunar orbit insertion (LOI) maneuvers is designed. Both the TLI and LOI maneuvers are assumed to be impulsive thrust. As the successful execution of the TLI and LOI maneuvers are crucial factors among the various lunar mission parameters, it is necessary to design an optimal lunar transfer trajectory which guarantees the visibility from a specified ground station while executing these maneuvers. The optimal Earth-Moon transfer trajectory is simulated by modifying the Korean Lunar Mission Design Software using Impulsive high Thrust Engine (KLMDS-ITE) which is developed in previous studies. Four different mission scenarios are established and simulated to analyze the effects of the spacecraft's visibility considerations at the TLI and LOI maneuvers. As a result, it is found that the optimal Earth-Moon transfer trajectory, guaranteeing the spacecraft's visibility from Daejeon ground station at both the TLI and LOI maneuvers, can be designed with slight changes in total amount of delta-Vs. About 1% difference is observed with the optimal trajectory when none of the visibility condition is guaranteed, and about 0.04% with the visibility condition is only guaranteed at the time of TLI maneuver. The spacecraft's mass which can delivered to the Moon, when both visibility conditions are secured is shown to be about 534 kg with assumptions of KSLV-2's on-orbit mass about 2.6 tons. To minimize total mission delta-Vs, it is strongly recommended that visibility conditions at both the TLI and LOI maneuvers should be simultaneously implemented to the trajectory optimization algorithm.

Mission Orbit Design of CubeSat Impactor Measuring Lunar Local Magnetic Field

  • Lee, Jeong-Ah;Park, Sang-Young;Kim, Youngkwang;Bae, Jonghee;Lee, Donghun;Ju, Gwanghyeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.127-138
    • /
    • 2017
  • The current study designs the mission orbit of the lunar CubeSat spacecraft to measure the lunar local magnetic anomaly. To perform this mission, the CubeSat will impact the lunar surface over the Reiner Gamma swirl on the Moon. Orbit analyses are conducted comprising ${\Delta}V$ and error propagation analysis for the CubeSat mission orbit. First, three possible orbit scenarios are presented in terms of the CubeSat's impacting trajectories. For each scenario, it is important to achieve mission objectives with a minimum ${\Delta}V$ since the CubeSat is limited in size and cost. Therefore, the ${\Delta}V$ needed for the CubeSat to maneuver from the initial orbit toward the impacting trajectory is analyzed for each orbit scenario. In addition, error propagation analysis is performed for each scenario to evaluate how initial errors, such as position error, velocity error, and maneuver error, that occur when the CubeSat is separated from the lunar orbiter, eventually affect the final impact position. As a result, the current study adopts a CubeSat release from the circular orbit at 100 km altitude and an impact slope of $15^{\circ}$, among the possible impacting scenarios. For this scenario, the required ${\Delta}V$ is calculated as the result of the ${\Delta}V$ analysis. It can be used to practically make an estimate of this specific mission's fuel budget. In addition, the current study suggests error constraints for ${\Delta}V$ for the mission.

Multiple revolution Lunar Trajectory Design using Impulsive Thrust

  • Kang, Hye-Young;Song, Young-Joo;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.25.3-26
    • /
    • 2008
  • The direct way to the moon is to start from the parking orbit by using impulsive thruster In previous domestic research, the direct way has been studied by using a single impulsive shot. However, when a single impulsive shot occurs to go into a Translunar orbit, gravity losses occur because thruster is not impulsive shot but the finite burns and it causes the gravity losses. To make up for the weak point of a single impulsive shot, this paper divides TLI (Trans Lunar Injection) into several small burns. Therefore, departure loop trajectory and the Translunar trajectory. This method is useful not only to reduce the gravity losses but also to check the condition of satellite. By using this method, this paper demostrates the optimized trajectory from Earth parking orbit to lunar mission orbit which minimizes the fuel, and the SNOPT (Sparse Nonlinear OPTimizer software) is used to find optimal solution. Also, this paper provides lunar mission profile which includes the mission schedule when TLI, LOI (Lunar Orbit Insertion) maneuvers occur, a mount of fuel when thruster is used and other mission parameters.

  • PDF

3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

  • Hong, Ik-Seon;Yi, Yu;Yu, Jaehyung;Haruyama, Junichi
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

SPECKLE IMAGING TECHNIQUE FOR LUNAR SURFACES

  • Kim, Jinkyu;Sim, Chae Kyung;Jeong, Minsup;Moon, Hong-Kyu;Choi, Young-Jun;Kim, Sungsoo S.;Jin, Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.4
    • /
    • pp.87-97
    • /
    • 2022
  • Polarimetric measurements of the lunar surface from lunar orbit soon will be available via Wide-Field Polarimetric Camera (PolCam) onboard the Korea Pathfinder Lunar Orbiter (KPLO), which is planned to be launched in mid 2022. To provide calibration data for the PolCam, we are conducting speckle polarimetric measurements of the nearside of the Moon from the Earth's ground. It appears that speckle imaging of the Moon for scientific purposes has not been attempted before, and there is need for a procedure to create a "lucky image" from a number of observed speckle images. As a first step of obtaining calibration data for the PolCam from the ground, we search for the best sharpness measure for lunar surfaces. We then calculate the minimum number of speckle images and the number of images to be shift-and-added for higher resolution (sharpness) and signal-to-noise ratio.

Development of Kinematic Ephemeris Generator for Korea Pathfinder Lunar Orbiter (KPLO)

  • Song, Min-Sup;Park, Sang-Young;Kim, Youngkwang;Yim, Jo Ryeong
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.199-208
    • /
    • 2020
  • This paper presents a kinematic ephemeris generator for Korea Pathfinder Lunar Orbiter (KPLO) and its performance test results. The kinematic ephemeris generator consists of a ground ephemeris compressor and an onboard ephemeris calculator. The ground ephemeris compressor has to compress desired orbit propagation data by using an interpolation method in a ground system. The onboard ephemeris calculator can generate spacecraft ephemeris and the Sun/Moon ephemeris in onboard computer of the KPLO. Among many interpolation methods, polynomial interpolation with uniform node, Chebyshev interpolation, Hermite interpolation are tested for their performances. As a result of the test, it is shown that all the methods have some cases that meet requirements but there are some performance differences. It is also confirmed that, the Chebyshev interpolation shows better performance than other methods for spacecraft ephemeris generation, and the polynomial interpolation with uniform nodes yields good performance for the Sun/Moon ephemeris generation. Based on these results, a Kinematic ephemeris generator is developed for the KPLO mission. Then, the developed ephemeris generator can find an approximating function using interpolation method considering the size and accuracy of the data to be transmitted.

Frozen Orbits Construction for a Lunar Solar Sail

  • Khattab, Elamira Hend;Radwan, Mohamed;Rahoma, Walid Ali
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Frozen orbit is an attractive option for orbital design owing to its characteristics (its argument of pericenter and eccentricity are kept constant on an average). Solar sails are attractive solutions for massive and expensive missions. However, the solar radiation pressure effect represents an additional force on the solar sail that may greatly affect its orbital behavior in the long run. Thus, this force must be included as a perturbation force in the dynamical model for more accuracy. This study shows the calculations of initial conditions for a lunar solar sail frozen orbit. The disturbing function of the problem was developed to include the lunar gravitational field that is characterized by uneven mass distribution, third body perturbation, and the effect of solar radiation. An averaging technique was used to reduce the dynamical problem to a long period system. Lagrange planetary equations were utilized to formulate the rate of change of the argument of pericenter and eccentricity. Using the reduced system, frozen orbits for the Moon sail orbiter were constructed. The resulting frozen orbits are shown by two 3Dsurface (semi-major, eccentricity, inclination) figures. To simplify the analysis, we showed inclination-eccentricity contours for different values of semi-major axis, argument of pericenter, and values of sail lightness number.

Detection of an Impact Flash Candidate on the Moon with an Educational Telescope System

  • Kim, Eunsol;Kim, Yong Ha;Hong, Ik-Seon;Yu, Jaehyung;Lee, Eungseok;Kim, Kyoungja
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • At the suggestion of the NASA Meteoroid Environment Office (NASA/MEO), which promotes lunar impact monitoring worldwide during NASA's Lunar Atmosphere and Dust Environment Explorer (LADEE) mission period (launched Sept. 2013), we set up a video observation system for lunar impact flashes using a 16-inch educational telescope at Chungnam National University. From Oct. 2013 through Apr. 2014, we recorded 80 hours of video observation of the unilluminated part of the crescent moon in the evening hours. We found a plausible candidate impact flash on Feb. 3, 2014 at selenographic longitude $2.1^{\circ}$ and latitude $25.4^{\circ}$. The flash lasted for 0.2 s and the light curve was asymmetric with a slow decrease after a peak brightness of $8.7{\pm}0.3mag$. Based on a star-like distribution of pixel brightness and asymmetric light curve, we conclude that the observed flash was due to a meteoroid impact on the lunar surface. Since unequivocal detection of an impact flash requires simultaneous observation from at least two sites, we strongly recommend that other institutes and universities in Korea set up similar inexpensive monitoring systems involving educational or amateur telescopes, and that they collaborate in the near future.

Method for Identifying Lava Tubes Among Pit Craters Using Brightness Profile Across Pits on the Moon or Mars

  • Jung, Jongil;Hong, Ik-Seon;Cho, Eunjin;Yi, Yu
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Caves can serve as major outposts for future human exploration of the Moon and Mars. In addition, caves can protect people and electronic equipment from external hazards such as cosmic ray radiation and meteorites impacts and serve as a shelter. Numerous pit craters have been discovered on the Moon and Mars and are potential entrances to caves; the principal topographic features of pit craters are their visible internal floors and pits with vertical walls. We have devised two topographical models for investigating the relationship between the topographical characteristics and the inner void of pit craters. One of our models is a concave floor void model and the other is a convex floor tube model. For each model, optical photographs have been obtained under conditions similar to those in which optical photographs have been acquired for craters on the Moon and Mars. Brightness profiles were analyzed for determining the profile patterns of the void pit craters. The profile patterns were compared to the brightness profiles of Martian pit craters, because no good-quality images of lunar pit craters were available. In future studies, the model profile patterns will be compared to those of lunar pit craters, and the proposed method will likely become useful for finding lunar caves and consequently for planning lunar bases for manned lunar expeditions.

Construction of the image database of Earth's lava caves useful in identifying the lunar caves

  • Hong, Ik-Seon;Jeong, Jongil;Sohn, Jongdae;Oh, Suyeon;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.138.2-138.2
    • /
    • 2012
  • Cave on the Moon is considered as the most appropriate place for human to live during the frontier lunar exploration. While the lava flows, the outer crust gets cooled and solidified. Then, the empty space is remained inside after lava flow stops. Such empty space is called the lava caves. Those lava tubes on the Earth are formed mostly by volcanic activity. However, the lava tubes on satellite like Moon and planet like Mars without volcanic activity are mostly formed by the lava flow inside of the crater made by large meteorite impact. Some part of lava tube with collapsed ceiling appears as the entrance of the cave. Such area looks like a deep crater so called a pit crater. Four large pit craters with diameter of > 60 m and depth of > 40 m are found without difficulty from Kaguya and LRO mission image archives. However, those are too deep to use as easily accessible human frontier base. Therefore, now we are going to identify some smaller lunar caves with accessible entrances using LRO camera images of 0.5 m/pixel resolution. Earth's lava caves and their entrances are well photographed by surface and aerial camera in immense volume. Thus, if the image data are sorted and archived well, those images can be used in comparison with the less distinct lunar cave and entrance images due to its smaller size. Then, we can identify the regions on the Moon where there exist caves with accessible entrances. The database will be also useful in modeling geomorphology for lunar and Martian caves for future artificial intelligence investigation of the caves in any size.

  • PDF