• Title/Summary/Keyword: Lunar Reconnaissance Orbiter

Search Result 9, Processing Time 0.024 seconds

Lunar Crater Detection using Deep-Learning (딥러닝을 이용한 달 크레이터 탐지)

  • Seo, Haingja;Kim, Dongyoung;Park, Sang-Min;Choi, Myungjin
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.49-63
    • /
    • 2021
  • The exploration of the solar system is carried out through various payloads, and accordingly, many research results are emerging. We tried to apply deep-learning as a method of studying the bodies of solar system. Unlike Earth observation satellite data, the data of solar system differ greatly from celestial bodies to probes and to payloads of each probe. Therefore, it may be difficult to apply it to various data with the deep-learning model, but we expect that it will be able to reduce human errors or compensate for missing parts. We have implemented a model that detects craters on the lunar surface. A model was created using the Lunar Reconnaissance Orbiter Camera (LROC) image and the provided shapefile as input values, and applied to the lunar surface image. Although the result was not satisfactory, it will be applied to the image of the permanently shadow regions of the Moon, which is finally acquired by ShadowCam through image pre-processing and model modification. In addition, by attempting to apply it to Ceres and Mercury, which have similar the lunar surface, it is intended to suggest that deep-learning is another method for the study of the solar system.

Laser Ranging for Lunnar Reconnaissance Orbiter using NGSLR (NGSLR 시스템을 이용한 LRO 달 탐사선의 레이저 거리측정)

  • Lim, Hyung-Chul;McGarry, Jan;Park, Jong-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1136-1143
    • /
    • 2010
  • One-way laser ranging technology is applied for the precise orbit determination of LRO, which is the first trial for supporting the missions of lunar or planetary spacecraft. In this paper, LRO payload and ground system are discussed for LRO laser ranging, and some errors effecting on time of flight and tracking mount accuracy are analyzed. Additionally several technologies are also analyzed to make laser pulses shot from ground stations to arrive in the LRO earth window. Measurement data of LRO laser ranging verified that these technologies could be implemented for one-way laser ranging of lunar spacecraft.

ShadowCam Instrument and Investigation Overview

  • Mark Southwick Robinson;Scott Michael Brylow;Michael Alan Caplinger;Lynn Marie Carter;Matthew John Clark;Brett Wilcox Denevi;Nicholas Michael Estes;David Carl Humm;Prasun Mahanti;Douglas Arden Peckham;Michael Andrew Ravine;Jacob Andrieu Schaffner;Emerson Jacob Speyerer;Robert Vernon Wagner
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.149-171
    • /
    • 2023
  • ShadowCam is a National Aeronautics and Space Administration Advanced Exploration Systems funded instrument hosted onboard the Korea Aerospace Research Institute (KARI) Korea Pathfinder Lunar Orbiter (KPLO) satellite. By collecting high-resolution images of permanently shadowed regions (PSRs), ShadowCam will provide critical information about the distribution and accessibility of water ice and other volatiles at spatial scales (1.7 m/pixel) required to mitigate risks and maximize the results of future exploration activities. The PSRs never see direct sunlight and are illuminated only by light reflected from nearby topographic highs. Since secondary illumination is very dim, ShadowCam was designed to be over 200 times more sensitive than previous imagers like the Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC). ShadowCam images thus allow for unprecedented views into the shadows, but saturate while imaging sunlit terrain.

Lunar Limb Profiles Predicted from the Lunar Topographic Data of Kaguya and LRO

  • Soma, Mitsuru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.100.1-100.1
    • /
    • 2012
  • Lunar limb profiles are needed for analyses of lunar occultations and solar eclipses. The lunar limb profile data by C.B. Watts (1963) have been used for such analyses, but it has been found that there are many kinds of errors in the data by Watts, which seriously affected the results obtained from the analyses of the observations. Recently very precise lunar topographic data were obtained by the Japanese lunar explorer Kaguya and NASA's Lunar Reconnaissance Orbiter. I obtained lunar limb profiles for any lunar librations from them. I will show how well the lunar limb profiles fit to observed ones from lunar grazing occultations. By combining the accurate lunar limb profiles with observations of lunar occultations we can detect errors in the Hipparcos stellar reference frame. By analyzing Baily's beads timing observations of past total and annular solar eclipses using the accurate lunar limb profiles we will be able to detect solar diameter variations.

  • PDF

A Case Study on LRO Flight Software for Korean Lunar Exploration Program (한국형 달 탐사 프로그램을 위한 LRO 비행 소프트웨어 사례 분석)

  • Kim, Changkyoon;Kwon, Jae-Wook;Moon, Sang-Man;Kim, In-Kyu;Min, Seung Yong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.73-80
    • /
    • 2015
  • For Korean first lunar exploration program, KARI(Korea Aerospace Research Institute) has been researching in various fields and investigating cases of abroad lunar exploration spacecrafts. In the field of the flight software, KARI has been analysing some cases such as NASA LRO, and this paper describes the result of the case study on LRO flight software.

Calibration of ShadowCam

  • David Carl Humm;Mallory Janet Kinczyk;Scott Michael Brylow;Robert Vernon Wagner;Emerson Jacob Speyerer;Nicholas Michael Estes;Prasun Mahanti;Aaron Kyle Boyd;Mark Southwick Robinson
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.173-197
    • /
    • 2023
  • ShadowCam is a high-sensitivity, high-resolution imager provided by NASA for the Danuri (KPLO) lunar mission. ShadowCam calibration shows that it is well suited for its purpose, to image permanently shadowed regions (PSRs) that occur near the lunar poles. It is 205 times as sensitive as the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC). The signal to noise ratio (SNR) is greater than 100 over a large part of the dynamic range, and the top of the dynamic range is high enough to accommodate most brighter PSR pixels. The optical performance is good enough to take full advantage of the 1.7 meter/pixel image scale, and calibrated images have uniform response. We describe some instrument artifacts that are amenable to future corrections, making it possible to improve performance further. Stray light control is very challenging for this mission. In many cases, ShadowCam can image shadowed areas with directly illuminated terrain in or near the field of view (FOV). We include thorough qualitative descriptions of circumstances under which lunar brightness levels far higher than the top of the dynamic range cause detector or stray light artifacts and the size and extent of the artifact signal under those circumstances.

A Research Trend on Lunar Resources and Lunar Base (달 자원 탐사와 달 기지 연구 동향)

  • Kim, Kyeong Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.373-384
    • /
    • 2017
  • A new era with the $4^{th}$ Industrial Revolution certainly brings new opportunities for human to explore human's activities outside of the Earth. After the Apollo program, exploration for lunar resources and establishment of lunar base seem to be in reality. This could be due to new findings by the LCROSS and LRO proving the advanced scientific development and new scientific results about the moon from Asian countries including China with Chang'E missions. It is expected that fossil fuels will be in shortage in the near future and at this time, Helium-3 could be an energy resource as a replacement of the fossil fuels. At present it is well known that countries like Russia, USA, and Europe will continue to investigate on lunar exploration especially with landers toward future human activities on the moon to establish a lunar base. With this point of view, it is important for human to understand lunar resources and prepare for prospective utilization of lunar resources. This review paper considers on a point of view in both lunar resource exploration and establishment of lunar base.

Forbush Decreases Observed by the LRO/CRaTER

  • Sohn, Jongdae;Oh, Suyeon;Yi, Yu;Kim, Eojin;Lee, Joo-Hee;Spence, Harlan E.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.120.1-120.1
    • /
    • 2012
  • The Lunar Reconnaissance Orbiter (LRO) launched on June 16, 2009 has six experiments including of the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) onboard. The CRaTER instrument characterizes the radiation environment to be experienced by humans during future lunar missions. The CRaTER instrument measures the effects of ionizing energy loss in matter specifically in silicon solid-state detectors due to penetrating solar energetic protons (SEP) and galactic cosmic rays (GCRs) after interactions with tissue-equivalent plastic (TEP), a synthetic analog of human tissue. The CRaTER instrument houses a compact and highly precise microdosimeter. It measures dose rates below one micro-Rad/sec in silicon in lunar radiation environment. Forbush decrease (FD) event is the sudden decrease of GCR flux. We use the data of cosmic ray and dose rates observed by the CRaTER instrument. We also use the CME list of STEREO SECCHI inner, outer coronagraph and the interplanetary CME data of the ACE/MAG instrument.We examine the origins and the characteristics of the FD-like events in lunar radiation environment. We also compare these events with the FD events on the Earth. We find that whenever the FD events are recorded at ground Neutron Monitor stations, the FD-like events also occur on the lunar environments. The flux variation amplitude of FD-like events on the Moon is approximately two times larger than that of FD events on the Earth. We compare time profiles of GCR flux with of the dose rate of FD-like events in the lunar environment. We figure out that the distinct FD-like events correspond to dose rate events in the CRaTER on lunar environment during the event period.

  • PDF

Radarsat-1 ScanSAR Quick-look Signal Processing and Demonstration Using SPECAN Algorithm (SPECAN 알고리즘을 이용한 Radatsat-1 ScanSAR Quick-look 신호 처리 및 검증 알고리즘 구현)

  • Song, Jung-Hwan;Lee, Woo-Kyung;Kim, Dong-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.75-86
    • /
    • 2010
  • As the performance of the spaceborne SAR has been dramatically enhanced and demonstrated through advanced missions such as TerraSAR and LRO(Lunar Reconnaissance Orbiter), the need for highly sophisticated and efficient SAR processor is also highlighted. In Korea, the activity of SAR researches has been mainly concerned with SAR image applications and the current SAR raw data studies are mostly limited to stripmap mode cases. The first Korean spaceborne SAR is scheduled to be operational from 2010 and expected to deliver vast amount of SAR raw data acquired from multiple operational scenarios including ScanSAR mode. Hence there will be an increasing demand to implement ground processing systems that enable to analyze the acquired ScanSAR data and generate corresponding images. In this paper, we have developed an efficient ScanSAR processor that can be directly applied to spaceborne ScanSAR mode data. The SPECAN(Spectrum Analysis) algorithm is employed for this purpose and its performance is verified through RADARSAT-1 ScanSAR raw data taken over Korean peninsular. An efficient quick-look processing is carried out to produce a wide-swath SAR image and compared with the conventional RDA processing case.