• Title/Summary/Keyword: Lunar Module

Search Result 19, Processing Time 0.023 seconds

Design of Path Tracking Controller Based on Thrusters for the Lunar Lander Demonstrator (달 착륙선 지상시험모델의 경로 추종을 위한 추력기 기반 제어기 설계)

  • Kim, Kwang-Jin;Lee, Jeong-Sook;Lee, Sang-Chul;Ko, Sang-Ho;Rhyu, Dong-Young;Ju, Gwang-Hyeok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.37-43
    • /
    • 2011
  • Lunar exploration program has been prepared with the aim of launch in the 2020's. As part of it, a lunar lander demonstrator has been developed which is the model for verifying all the system, such as structure, propulsion and control system before launch to deep space. After verifying all the system, the demonstrator will be evaluated by flight test. This paper deals with path tracking controller based on thrusters for the demonstrator. For this, first we derive equations of motion according to the allocation of thrusters and design the path tracking controller. The signal generated from the controller is continuous so PWPF(Pulse-Width Pulse-Frequency) modulator is adopted for generating on/off signal. Finally MATLAB simulation is performed for evaluating the path tracking ability and the final landing velocity.

Study on the Thermal Design of Nuclear Battery for Lunar Mission (한국형 달 탐사용 원자력전지의 열제어 구조 연구)

  • Hong, Jintae;Son, Kwang-Jae;Kim, Jong-Bum;Park, Jong-Han;Ahn, Dong-Gyu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.4
    • /
    • pp.271-277
    • /
    • 2016
  • For a stable electric power supply in the space, nuclear batteries have been used as the main power source in a spacecraft owing to their long lifetime and high reliability. In accordance with the plan for lunar mission in Korea, nuclear batteries will supply electricity to the rover that needs to be developed. According to the information about the estimated payload, Korea Atomic Energy Research Institute started with the conceptual design based on the previous studies in USA and Russia. Because a nuclear battery converts the decay heat of the radioisotope into electricity, thermal design, radiation shield, and shock protection need to be considered. In this study, two types of nuclear batteries, radial type and axial type, were designed according to the alignment of the thermoelectric module. Heat transfer analyses were performed to compare their thermoelectric efficiency, and test mockups were fabricated to evaluate their performances.

A Deep Space Orbit Determination Software: Overview and Event Prediction Capability

  • Kim, Youngkwang;Park, Sang-Young;Lee, Eunji;Kim, Minsik
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.139-151
    • /
    • 2017
  • This paper presents an overview of deep space orbit determination software (DSODS), as well as validation and verification results on its event prediction capabilities. DSODS was developed in the MATLAB object-oriented programming environment to support the Korea Pathfinder Lunar Orbiter (KPLO) mission. DSODS has three major capabilities: celestial event prediction for spacecraft, orbit determination with deep space network (DSN) tracking data, and DSN tracking data simulation. To achieve its functionality requirements, DSODS consists of four modules: orbit propagation (OP), event prediction (EP), data simulation (DS), and orbit determination (OD) modules. This paper explains the highest-level data flows between modules in event prediction, orbit determination, and tracking data simulation processes. Furthermore, to address the event prediction capability of DSODS, this paper introduces OP and EP modules. The role of the OP module is to handle time and coordinate system conversions, to propagate spacecraft trajectories, and to handle the ephemerides of spacecraft and celestial bodies. Currently, the OP module utilizes the General Mission Analysis Tool (GMAT) as a third-party software component for high-fidelity deep space propagation, as well as time and coordinate system conversions. The role of the EP module is to predict celestial events, including eclipses, and ground station visibilities, and this paper presents the functionality requirements of the EP module. The validation and verification results show that, for most cases, event prediction errors were less than 10 millisec when compared with flight proven mission analysis tools such as GMAT and Systems Tool Kit (STK). Thus, we conclude that DSODS is capable of predicting events for the KPLO in real mission applications.

Optimization of Material Extruding Performance to Build a 3D Printed Habitat on the Moon and Mars (달, 화성 3D 프린팅 주거지 건설을 위한 재료 사출기능 최적화 연구)

  • Lee, Jin Young;Lee, Tai Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.345-349
    • /
    • 2019
  • The National Aeronautics and Space Administration (NASA) has long been studying the essential elements of manned planetary exploration and has held several international challenges to encourage the research works related to it. One of them was the NASA Centennial Challenge Programs which started in 2015. Following the second in 2017, the third is currently going on in 2019. Participating "3D-Printed Habitat Challenge", one of the challenges in the second program, this research team designed and developed the 3D printer extruding module for the Lunar Simulant (Korea Hanyang Lunar Simulant-1; KOHLS-1) and the polymer. For optimizing the modul, a cylindrical specimen of ${\varnothing}150{\times}300mm^3$ volume and a specimen of $200{\times}100{\times}650mm^3$ volume were manufactured and their compressive and flexural strengths were tested. The findings can help automatize the space construction in the future.

Development of a Measurement Data Algorithm of Deep Space Network for Korea Pathfinder Lunar Orbiter mission (달 탐사 시험용 궤도선을 위한 심우주 추적망의 관측값 구현 알고리즘 개발)

  • Kim, Hyun-Jeong;Park, Sang-Young;Kim, Min-Sik;Kim, Youngkwang;Lee, Eunji
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.746-756
    • /
    • 2017
  • An algorithm is developed to generate measurement data of deep space network for Korea Pathfinder Lunar Orbiter (KPLO) mission. The algorithm can provide corrected measurement data for the Orbit Determination (OD) module in deep space. This study describes how to generate the computed data such as range, Doppler, azimuth angle and elevation angle. The geometric data were obtained by General Mission Analysis Tool (GMAT) simulation and the corrected data were calculated with measurement models. Therefore, the result of total delay includes effects of tropospheric delay, ionospheric delay, charged particle delay, antenna offset delay, and tropospheric refraction delay. The computed measurement data were validated by comparison with the results from Orbit Determination ToolBoX (ODTBX).

Effect of Internal Flow Guide in Pintle Tip on Pintle Injector Thruster Combustion (핀틀 인젝터의 팁 내부 유동 가이드가 연소 성능에 미치는 영향)

  • Lee, Keonwoong;Nam, Jeonsoo;Radhakrishnan, Kanmaniraja;Koo, Jaye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.703-709
    • /
    • 2020
  • Pintle injector is known to have been adopted as injector of Lunar Module Descent Engine (LMDE) and contributed to success of the Apollo program and recently used in merlin engine. In this study, 500N Lab-Scale pintle injector thruster was manufactured and the combustion experiment with LOx/GCH4 was conducted. However, the proto-type thruster was showed some problems, such as low combustion efficiency and melting of pintle tip. To solve these problems, the flow guide in pintle tip was suggested through the CFD simulation. After addition of flow guide module, the combustion efficiency increased and pintle tip did not melt until the end of combustion.

Skeletal Muscle Strength Characteristics in Elderly People and Its Relationship with Body Composition (노인 근력 특성 및 체성분과의 관계)

  • Choi, Dong-Sung;Jeon, Justin Y.;Won, Young-Shin;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.297-308
    • /
    • 2011
  • The purpose of this study was to investigate the relationship among isometric and isokinetic muscle strength, lean body mass(LBM) and bone mineral density(BMD) in the elderly. Eleven males(age, 70.27${\pm}$5.78yr; height, 167.36${\pm}$6.68 cm; weight, 68.34${\pm}$8.23 kg) and thirteen female(age, 69.77${\pm}$4.13yr; height, 152.80${\pm}$4.45 cm; weight, 56.86${\pm}$7.40 kg) participated in this study. In all subjects, LBM and BMD segments was measured by using Dual-energy x-ray absorptiometry(DEXA, Lunar DPS-DM, U.S.A.). Maximum isometric and isokinetic muscle strength of flexion and extension at the knee and elbow, ankle, trunk joints were measured by using an isokinetic dynamometer(CON-TREX(R) Multi Joint Testing Module, Switzerland). The results of this study showed that isometric and isokinetic muscle strength was significantly higher in extension than flexion. In the male and female, hamstring to quadriceps strength ratio(H:Q ratio) was increased as contraction velocity increased. BMD was correlated significantly with trunk extension in the male, but not in the female. LBM was correlated significantly in the male and female with knee extension strength. This study suggests that in the elderly muscle strength training program should put more weight on extensor muscles of the body.

An Analysis of Middle School Students' Perceptions and Learning Satisfaction in SMART Learning-based Science Instruction (스마트러닝 기반 과학수업에 대한 중학생들의 인식과 학습만족도 분석)

  • Park, Su-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.34 no.7
    • /
    • pp.727-737
    • /
    • 2013
  • The purpose of this study was to investigate the middle school students' perception and their learning satisfaction in SMART learning based science instruction. Three types of modules on the solar system and lunar phases unit at the middle school level were developed and lessons on each module were taught to 207 student participants. All participants were provided with tabletPC(iPad2) with iOS5 installed, and using astronomy app Solar Walk, mirroring function, QR code, and Google Presentation, the lessons were carried out both in classroom and at home. The instrument for assessing students' perception on the SMART learning-based instruction was developed based on 4 factors including Self-directed, Motivation, Adaptiveness, and Technology Embedded, with a Likert scale from 1-5 on 20 items. The learning satisfaction survey instrument was originally from Keller's work (1987), and its test items were adapted and modified. To reveal the perception and learning satisfaction about SMART learning-based science lessons, the participants were comparatively analyzed by gender and science achievement levels. Results indicated that male students showed positive perception for the SMART learning-based instruction. Group with higher science achievement scores showed more positive perception of the SMART learning-based instruction in terms of Self-directed and Motivation factor. Also, the learning satisfaction of male students was higher than female students and group with higher academic ability more satisfied with the SMART learning-based instruction than the low group. The results provide implications for future development of programs and help set a direction of increasing the use of a SMART learning-based science in school.

Current Status and Outlook of the Space Economy (우주분야 연구개발 및 산업동향)

  • Choi, Soo-Mi
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.1
    • /
    • pp.3-13
    • /
    • 2008
  • The year 2007 marked two important anniversaries for space. The Soviet Union launched Sputnik 50 years ago on October 4. 1957. The 40th anniversary of the United Nations treaty on outer space was also marked in 2007. 2008 and 2007 were full of dramatic events of space activity as well : Success of Japan's first large lunar explorer 'KAGUYA'(SELENE) and China's 'Chang'e 1', launch of ISS laboratory module, 'Colombus' and 'Kibo', test of China's ASAT, and success of Korea's first astronaut program and so on. International government space budgets reached $78.3 billion in 2007, a strong growth rate of 36% over 2006, and the recently released Global Exploration Strategy, The Framework for Coordination is a set of guidelines for international cooperation among 14 of the world's space agencies. Worldwide space industry revenue grew by 20% over 2005, $106.1 billion in 2006 and $173.9 billion expected in 2007. This paper discusses the issues related to the Earth observation R&D trend and market in detail. Korea's 2008 government space spending is \316.4 billion, 2007 space industry revenue was $106 million. Several research projects are now underway and STSAT 2 will be launched by KSLV-1 at the Naro Space Center within this year.

  • PDF